Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells ( i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Concise review: the surface markers and identity of human mesenchymal stem cells.

          The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo. © 2014 AlphaMed Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp.

            Bone marrow mesenchymal stem cells (MSCs) are currently being investigated in preclinical and clinical settings because of their multipotent differentiative capacity or, alternatively, their immunosuppressive function. The aim of this study was to evaluate dental pulp (DP) as a potential source of MSCs instead of bone marrow (BM). Flow cytometric analysis showed that DP-MSCs and BM-MSCs were equally SH2, SH3, SH4, CD29 and CD 166 positive. The in vitro proliferative kinetics of MSCs were measured by 3H-thymidine incorporation uptake. The immunosuppressive function of MSCs was then tested by coculturing PHA-stimulated allogeneic T cells with or without MSCs for 3 days. BM-MSCs could be differentiated in vitro into osteogenic, chondrogenic and adipogenic lineages. DP-MSCs showed osteogenic and adipocytic differentiation, but did not differentiate into chondrocytes. Although DP-MSCs grow rapidly in vitro between day 3 and day 8 of culture and then decrease their proliferation by day 15, BM-MSCs have a stable and continuous proliferation over the same period of time. The addition of DP-MSCs or BM-MSCs resulted in 91 +/- 4% and 75 +/- 3% inhibition of T cell response, respectively, assessed by a 3H-thymidine assay. Dental pulp is an easily accessible and efficient source of MSCs, with different kinetics and differentiation potentialities from MSCs as isolated from the bone marrow. The rapid proliferative capacity together with the immunoregulatory characteristics of DP-MSCs may prompt future studies aimed at using these cells in the treatment or prevention of T-cell alloreactivity in hematopoietic or solid organ allogeneic transplantation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urine derived cells are a potential source for urological tissue reconstruction.

              Contemporary approaches to tissue engineering and cell therapy for urinary tract reconstruction require invasive tissue biopsies to obtain autologous cells. However, these procedures are associated with potential complications. We determined whether the cells present in urine have characteristics of normal bladder cells and investigated their potential uses for urological reconstructive procedures. A total of 55 urine samples were collected from 15 healthy individuals and 8 patients with vesicoureteral reflux. Urine derived cells were isolated, expanded and tested for progenitor and differentiated cell specific markers using flow cytometry, immunofluorescence and Western immunoblotting. The chromosomal stability of cultured urine derived cells was determined by karyotype analysis. Clones were successfully established from primary cultures of urine derived cells. Isolated cells showed 3 phenotypes, including fully differentiated, differentiating and progenitor-like cells. Some urine derived cells stained positive for the surface markers c-Kit, SSEA4, CD105, CD73, CD91, CD133 and CD44. Two to 7 cells per 100 ml urine were multipoint progenitors that could expand extensively in culture. Single progenitor cells had the ability to differentiate into the cell lineages expressing urothelial, smooth muscle, endothelial and interstitial cell markers. The expression of lineage markers was characterized by Western blot and immunofluorescence analysis. Urine derived cells also maintained a normal karyotype after serial culture. A subpopulation of cells isolated from urine had progenitor cell features and the potential to differentiate into several bladder cell lineages. Urine derived cells could serve as an alternative cell source for urinary tract tissue engineering and reconstruction.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                21 June 2016
                June 2016
                : 17
                : 6
                : 982
                Affiliations
                [1 ]Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China; 15823106296@ 123456163.com (S.L.); journeyzone@ 123456163.com (J.Z.); 13677691923@ 123456163.com (X.Z.); 13657638643@ 123456163.com (Y.L.); ChenJindentistry@ 123456163.com (J.C.); huboisthebest@ 123456sina.com (B.H.)
                [2 ]College of Stomatology, Chongqing Medical University, Chongqing 401147, China
                [3 ]Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
                [4 ]Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
                Author notes
                [* ]Correspondence: soongjl@ 123456163.com (J.S.); yzhang@ 123456wakehealth.edu (Y.Z.); Tel.: +86-23-8886-0026 (J.S.); +1-336-713-1189 (Y.Z.); Fax: +86-23-8886-0222 (J.S.); +1-336-713-7290 (Y.Z.)
                [†]

                These authors contributed equally to this study and share first authorship.

                Article
                ijms-17-00982
                10.3390/ijms17060982
                4926512
                27338364
                eeb04897-9bcd-4f2a-bff9-c595292a6874
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 April 2016
                : 10 May 2016
                Categories
                Review

                Molecular biology
                stem cells,stem cell therapy,optimizing strategy,tissue repair,tissue regeneration

                Comments

                Comment on this article