70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gas and Propane Combustion from Stoves Emits Benzene and Increases Indoor Air Pollution

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exposure pathways to the carcinogen benzene are well-established from tobacco smoke, oil and gas development, refining, gasoline pumping, and gasoline and diesel combustion. Combustion has also been linked to the formation of nitrogen dioxide, carbon monoxide, and formaldehyde indoors from gas stoves. To our knowledge, however, no research has quantified the formation of benzene indoors from gas combustion by stoves. Across 87 homes in California and Colorado, natural gas and propane combustion emitted detectable and repeatable levels of benzene that in some homes raised indoor benzene concentrations above well-established health benchmarks. Mean benzene emissions from gas and propane burners on high and ovens set to 350 °F ranged from 2.8 to 6.5 μg min–1, 10 to 25 times higher than emissions from electric coil and radiant alternatives; neither induction stoves nor the food being cooked emitted detectable benzene. Benzene produced by gas and propane stoves also migrated throughout homes, in some cases elevating bedroom benzene concentrations above chronic health benchmarks for hours after the stove was turned off. Combustion of gas and propane from stoves may be a substantial benzene exposure pathway and can reduce indoor air quality.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global Carbon Budget 2021

          Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLAND was 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOS relative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Better Bootstrap Confidence Intervals

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hematotoxicity in workers exposed to low levels of benzene.

              Benzene is known to have toxic effects on the blood and bone marrow, but its impact at levels below the U.S. occupational standard of 1 part per million (ppm) remains uncertain. In a study of 250 workers exposed to benzene, white blood cell and platelet counts were significantly lower than in 140 controls, even for exposure below 1 ppm in air. Progenitor cell colony formation significantly declined with increasing benzene exposure and was more sensitive to the effects of benzene than was the number of mature blood cells. Two genetic variants in key metabolizing enzymes, myeloperoxidase and NAD(P)H:quinone oxidoreductase, influenced susceptibility to benzene hematotoxicity. Thus, hematotoxicity from exposure to benzene occurred at air levels of 1 ppm or less and may be particularly evident among genetically susceptible subpopulations.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Science & Technology
                Environ. Sci. Technol.
                American Chemical Society (ACS)
                0013-936X
                1520-5851
                June 15 2023
                Affiliations
                [1 ]Earth System Science Department, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
                [2 ]PSE Healthy Energy, 1140 Broadway, Suite 750, Oakland, California 94612, United States
                [3 ]Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California 94720, United States
                [4 ]Energy Technologies Area, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
                [5 ]Woods Institute for the Environment and Precourt Institute for Energy, Stanford, California 94305, United States
                Article
                10.1021/acs.est.2c09289
                c57f5308-6979-4ba0-b329-eed2cf19ce41
                © 2023

                https://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article