8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.

          Related collections

          Most cited references182

          • Record: found
          • Abstract: found
          • Article: not found

          HMG-1 as a late mediator of endotoxin lethality in mice.

          Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neuroinflammation: friend and foe for ischemic stroke

            Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathology of Neurodegenerative Diseases.

              Neurodegenerative disorders are characterized by progressive loss of selectively vulnerable populations of neurons, which contrasts with select static neuronal loss because of metabolic or toxic disorders. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormality. The most common neurodegenerative disorders are amyloidoses, tauopathies, α-synucleinopathies, and TDP-43 proteinopathies. The protein abnormalities in these disorders have abnormal conformational properties. Growing experimental evidence suggests that abnormal protein conformers may spread from cell to cell along anatomically connected pathways, which may in part explain the specific anatomical patterns observed at autopsy. In this review, we detail the human pathology of select neurodegenerative disorders, focusing on their main protein aggregates.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Oxidative Medicine and Cellular Longevity
                Oxidative Medicine and Cellular Longevity
                Hindawi Limited
                1942-0900
                1942-0994
                August 03 2020
                August 03 2020
                : 2020
                : 1-18
                Affiliations
                [1 ]Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
                [2 ]Department of Medical Science, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
                [3 ]Toscana Life Sciences, 53100 Siena, Italy
                [4 ]Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
                [5 ]Department of Biomedical and Dental Sciences and Morphofunctional Imaging, AOU Policlinico Universitario “G. Martino”, 98125 Messina, Italy
                [6 ]Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
                [7 ]Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
                Article
                10.1155/2020/8363245
                b095b4c5-15f2-43a1-84da-b71c367057d9
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article