54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cathelicidin-like Helminth Defence Molecules (HDMs): Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.

          Author Summary

          In mammals, secreted host defence peptides (HDPs) protect against a wide range of infectious pathogens. They also perform a range of immune modulatory functions which regulate the immune response to pathogens, ensuring that the protective inflammatory response is not exacerbated and that post-infection repair mechanisms are initiated. We identified a novel family of molecules secreted by medically-important helminth pathogens (termed helminth defence molecules; HDMs) that exhibit striking structural and biochemical similarities to the HDPs. To further investigate the extent of this similarity, we have performed a comparative functional study between several well characterized, anti-microbial, mammalian HDPs and a series of parasite-derived peptides. The parasite HDMs displayed immune modulatory properties that were similar to their HDP homologs in mammals, but possessed no antimicrobial or cytotoxic activity. We propose that HDMs of these helminth pathogens underwent specific adaptation, losing their anti-microbial activity but retaining their ability to regulate the immune responses of their mammalian hosts. This absence of cytotoxicity and retention of immune-modulatory activity offers an opportunity to design novel immunotherapeutics derived from the HDMs which could be used to combat destructive inflammatory responses associated with microbial infection and immune-related disorders.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Defensins: antimicrobial peptides of innate immunity.

          Tomas Ganz (2003)
          The production of natural antibiotic peptides has emerged as an important mechanism of innate immunity in plants and animals. Defensins are diverse members of a large family of antimicrobial peptides, contributing to the antimicrobial action of granulocytes, mucosal host defence in the small intestine and epithelial host defence in the skin and elsewhere. This review, inspired by a spate of recent studies of defensins in human diseases and animal models, focuses on the biological function of defensins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense.

            Antimicrobial peptides (AMPs) are widely expressed and rapidly induced at epithelial surfaces to repel assault from diverse infectious agents including bacteria, viruses, fungi and parasites. Much information suggests that AMPs act by mechanisms that extend beyond their capacity to serve as gene-encoded antibiotics. For example, some AMPs alter the properties of the mammalian membrane or interact with its receptors to influence diverse cellular processes including cytokine release, chemotaxis, antigen presentation, angiogenesis and wound healing. These functions complement their antimicrobial action and favor resolution of infection and repair of damaged epithelia. Opposing this, some microbes have evolved mechanisms to inactivate or avoid AMPs and subsequently become pathogens. Thus, AMPs are multifunctional molecules that have a central role in infection and inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of cationic antimicrobial peptides in innate host defences.

              Cationic antimicrobial peptides are found in all living species. A single animal can contain >24 different antimicrobial peptides, which fall into four structural classes. These peptides are produced in large quantities at sites of infection and/or inflammation and can have broad-spectrum antibacterial, antifungal, antiviral, antiprotozoan and antisepsis properties. In addition, they interact directly with host cells to modulate the inflammatory process and innate defences.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                July 2013
                11 July 2013
                : 7
                : 7
                : e2307
                Affiliations
                [1 ]Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
                [2 ]Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
                [3 ]Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona, United States of America
                [4 ]The ithree Institute, University of Technology Sydney (UTS), Sydney, Australia
                [5 ]School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, Northern Ireland
                Uniformed Services University of the Health Sciences, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: K. Thivierge, S. Cotton, M. Riggs, M. Robinson, J. Dalton, S. Donnelly. Performed the experiments: K. Thivierge, S. Cotton, D. Schaefer, M. Riggs, J. To, M. Lund, M. Robinson, S. Donnelly. Analyzed the data: K. Thivierge, S. Cotton, D. Schaefer, M. Riggs, J. To, M. Lund, M. Robinson, J. Dalton, S. Donnelly. Contributed reagents/materials/analysis tools: M. Riggs, J. Dalton. Wrote the paper: K. Thivierge, S. Cotton, D. Schaefer, M. Riggs, J. To, M. Lund, M. Robinson, J. Dalton, S. Donnelly.

                Article
                PNTD-D-13-00132
                10.1371/journal.pntd.0002307
                3708846
                23875042
                a3407bb9-d101-4843-b2f1-de663bf08212
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 January 2013
                : 29 May 2013
                Page count
                Pages: 14
                Funding
                JPD is a Canadian Institute of Health Research (CIHR) Chair (Tier 1) in Infectious Diseases. JPD is recipient of a Discovery Grant for the National Science and Engineering Research Council (NSERC), Canada. MEL is supported by a University of Technology Sydney postgraduate scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article