15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A heralded quantum gate between remote quantum memories

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine "clock" state atomic qubits and mediated by the interference of two emitted photons carrying frequency encoded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. This entangling gate together with single qubit operations is sufficient to generate large entangled cluster states for scalable quantum computing.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Persistent entanglement in arrays of interacting particles

          We study the entanglement properties of a class of \(N\) qubit quantum states that are generated in arrays of qubits with an Ising-type interaction. These states contain a large amount of entanglement as given by their Schmidt measure. They have also a high {\em persistency of entanglement} which means that \(\sim N/2\) qubits have to be measured to disentangle the state. These states can be regarded as an entanglement resource since one can generate a family of other multi-particle entangled states such as the generalized GHZ states of \(
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            What is Localization?

              Bookmark

              Author and article information

              Journal
              0902.2136

              Quantum physics & Field theory
              Quantum physics & Field theory

              Comments

              Comment on this article