Developing versatile and high sensitivity sensors is beneficial for promoting flexible electronic devices and human‐machine interactive systems. Researchers are working on the exploration of various active sensing materials toward broad detection, multifunction, and low‐power consumption. Here, a versatile ion‐gel fibrous membrane is presented by electrospinning technology and utilized to construct capacitive sensors and triboelectric nanogenerator (TENG). The iontronic capacitive sensor exhibits inherently favorable sensitivity and repeatability, which retains long‐term stability after 5000 cycles. The capacitive sensor can also detect a clear pulse waveform at the human wrist and enable the mapping of pressure distribution by a capacitive sensory matrix. For the iontronic TENG, the maximum peak power is 54.56 µW and can be used to power commercial electronics. In addition, the prepared iontronic TENG array can achieve interactive, rapidly responsive, and accurate dynamic monitoring, which broadens the exploration to direct and effective sensory devices. The versatile ion‐gel fibrous membrane is promising to provide an outstanding approach for physiological detection, biomechanical energy harvesting, human‐machine interaction, and self‐powered monitoring systems.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.