2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoparticle administration method in cell culture alters particle-cell interaction

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a highly interdisciplinary field, working with nanoparticles in a biomedical context requires a robust understanding of soft matter physics, colloidal behaviors, nano-characterization methods, biology, and bio-nano interactions. When reporting results, it can be easy to overlook simple, seemingly trivial experimental details. In this context, we set out to understand how in vitro technique, specifically the way we administer particles in 2D culture, can influence experimental outcomes. Gold nanoparticles coated with poly(vinylpyrrolidone) were added to J774A.1 mouse monocyte/macrophage cultures as either a concentrated bolus, a bolus then mixed via aspiration, or pre-mixed in cell culture media. Particle-cell interaction was monitored via inductively coupled plasma-optical emission spectroscopy and we found that particles administered in a concentrated dose interacted more with cells compared to the pre-mixed administration method. Spectroscopy studies reveal that the initial formation of the protein corona upon introduction to cell culture media may be responsible for the differences in particle-cell interaction. Modeling of particle deposition using the in vitro sedimentation, diffusion and dosimetry model helped to clarify what particle phenomena may be occurring at the cellular interface. We found that particle administration method in vitro has an effect on particle-cell interactions (i.e. cellular adsorption and uptake). Initial introduction of particles in to complex biological media has a lasting effect on the formation of the protein corona, which in turn mediates particle-cell interaction. It is of note that a minor detail, the way in which we administer particles in cell culture, can have a significant effect on what we observe regarding particle interactions in vitro.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.

          We investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells. We determined that transferrin-coated Au NP entered the cells via clathrin-mediated endocytosis pathway. The NPs exocytosed out of the cells in a linear relationship to size. This was different than the relationship between uptake and size. Furthermore, we developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines. These studies will provide guidelines for developing NPs for imaging and drug delivery applications, which will require "controlling" NP accumulation rate. These studies will also have implications in determining nanotoxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials.

            The interactions of nanoparticles with the soft surfaces of biological systems like cells play key roles in executing their biomedical functions and in toxicity. The discovery or design of new biomedical functions, or the prediction of the toxicological consequences of nanoparticles in vivo, first require knowledge of the interplay processes of the nanoparticles with the target cells. This article focusses on the cellular uptake, location and translocation, and any biological consequences, such as cytotoxicity, of the most widely studied and used nanoparticles, such as carbon-based nanoparticles, metallic nanoparticles, and quantum dots. The relevance of the size and shape, composition, charge, and surface chemistry of the nanoparticles in cells is considered. The intracellular uptake pathways of the nanoparticles and the cellular responses, with potential signaling pathways activated by nanoparticle interactions, are also discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Protein-nanoparticle interactions: opportunities and challenges.

                Bookmark

                Author and article information

                Contributors
                alke.fink@unifr.ch
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 January 2019
                29 January 2019
                2019
                : 9
                : 900
                Affiliations
                [1 ]ISNI 0000 0004 0478 1713, GRID grid.8534.a, Adolphe Merkle Institute, , Université de Fribourg, ; Fribourg, 1700 Switzerland
                [2 ]ISNI 0000 0004 0478 1713, GRID grid.8534.a, Chemistry Department, , Université de Fribourg, ; Fribourg, 1700 Switzerland
                Author information
                http://orcid.org/0000-0002-7886-5245
                http://orcid.org/0000-0002-4847-9845
                http://orcid.org/0000-0002-7805-9366
                Article
                36954
                10.1038/s41598-018-36954-4
                6351679
                c8ea09ae-fb5f-4c75-8d35-d6ff2784835f
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 August 2018
                : 9 November 2018
                Funding
                Funded by: Adolphe Merkle Foundation, National Center of Competence in Research "Bio-Inspired Materials"
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article