23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene ( eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated.

          Results

          We demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10 −3 M and 0.739 μmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti–rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum.

          Conclusion

          These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti–rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12917-014-0223-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Multifunctional alpha-enolase: its role in diseases.

          V Pancholi (2001)
          Enolase, a key glycolytic enzyme, belongs to a novel class of surface proteins which do not possess classical machinery for surface transport, yet through an unknown mechanism are transported on the cell surface. Enolase is a multifunctional protein, and its ability to serve as a plasminogen receptor on the surface of a variety of hematopoetic, epithelial and endothelial cells suggests that it may play an important role in the intravascular and pericellular fibrinolytic system. Its role in systemic and invasive autoimmune disorders was recognized only very recently. In addition to this property, its ability to function as a heat-shock protein and to bind cytoskeletal and chromatin structures indicate that enolase may play a crucial role in transcription and a variety of pathophysiological processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1).

            The Myc promoter-binding protein-1 (MBP-1) is a 37-38 kDa protein that binds to the c-myc P2 promoter and negatively regulates transcription of the protooncogene. MBP-1 cDNA shares 97% similarity with the cDNA encoding the glycolytic enzyme alpha-enolase and both genes have been mapped to the same region of human chromosome 1, suggesting the hypothesis that the two proteins might be encoded by the same gene. We show here data indicating that a 37 kDa protein is alternatively translated from the full-length alpha-enolase mRNA. This shorter form of alpha-enolase is able to bind the MBP-1 consensus sequence and to downregulate expression of a luciferase reporter gene under the control of the c-myc P2 promoter. Furthermore, using alpha-enolase/green fluorescent protein chimeras in transfection experiments we show that, while the 48 kDa alpha-enolase mainly has a cytoplasmic localization, the 37 kDa alpha-enolase is preferentially localized in the cell nuclei. The finding that a transcriptional repressor of the c-myc oncogene is an alternatively translated product of the ENO1 gene, which maps to a region of human chromosome 1 frequently deleted in human cancers, makes ENO1 a potential candidate for tumor suppressor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci.

              The plasmin(ogen) binding property of group A streptococci is incriminated in tissue invasion processes. We have characterized a novel 45-kDa protein displaying strong plasmin(ogen) binding activity from the streptococcal surface. Based on its biochemical properties, we confirmed the identity of this protein as alpha-enolase, a key glycolytic enzyme. Dose-dependent alpha-enolase activity, immune electron microscopy of whole streptococci using specific antibodies, and the opsonic nature of polyclonal and monoclonal antibodies concluded the presence of this protein on the streptococcal surface. We, henceforth, termed the 45-kDa protein, SEN (streptococcal surface enolase). SEN is found ubiquitously on the surface of most streptococcal groups and serotypes and showed significantly greater plasmin(ogen) binding affinity compared with previously reported streptococcal plasminogen binding proteins. Both the C-terminal lysine residue of SEN and a region N-terminal to it play a critical role in plasminogen binding. Results from competitive plasminogen binding inhibition assays and cross-linking studies with intact streptococci indicate that SEN contributes significantly to the overall streptococcal ability to bind plasmin(ogen). Our findings, showing both the protected protease activity of SEN-bound plasmin and SEN-specific immune responses, provide evidence for an important role of SEN in the disease process and post-streptococcal autoimmune diseases.
                Bookmark

                Author and article information

                Contributors
                bsjdy@126.com
                gxq8332203@126.com
                yus@shvri.ac.cn
                dingjiabo@ivolc.gov.cn
                tanlei@shvri.ac.cn
                zero0fan@gmail.com
                injie_sun@hotmail.com
                xsqiu1982@shvri.ac.cn
                chenguanghua@ivdc.gov.cn
                shoveldeen@shvri.ac.cn
                Journal
                BMC Vet Res
                BMC Vet. Res
                BMC Veterinary Research
                BioMed Central (London )
                1746-6148
                25 September 2014
                25 September 2014
                2014
                : 10
                : 1
                : 223
                Affiliations
                [ ]Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241 China
                [ ]College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou, 730070 China
                [ ]China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Beijing, 100081 China
                Article
                223
                10.1186/s12917-014-0223-6
                4189797
                25253294
                ba6fe454-0345-453c-a373-baf897646a64
                © Bao et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 April 2014
                : 18 September 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Veterinary medicine
                mycoplasma synoviae,enolase,enzymatic activity,adherence
                Veterinary medicine
                mycoplasma synoviae, enolase, enzymatic activity, adherence

                Comments

                Comment on this article