5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel series of 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives were designed, synthesized, and screened for their inhibitory potential against COX-2 and 5-LOX enzymes. The compounds from the series have shown moderate to excellent inhibitory potential against both targets. Compound 6k showed the inhibitions against COX-2 (IC50 = 0.33 ± 0.02 μM) and 5-LOX inhibition (IC50 = 4.90 ± 0.22 μM) which was better than the standard celecoxib (IC50 = 1.81 ± 0.13 μM) for COX-2 and zileuton (IC50 = 15.04 ± 0.18 μM) for 5-LOX respectively. Further investigation on the selected derivative 6k in rat paw edema models revealed significant anti-inflammatory efficacy. Compound 6k has also shown negligible ulcerogenic liability as compared to indomethacin. Moreover, in vivo biochemical analysis also established the compound's antioxidant properties. Compounds 6c and 6k were also observed to be devoid of cardiotoxicity post-myocardial infarction in rats. The molecular docking and dynamics simulation studies of the most active derivative 6k affirmed their consentient binding interactions with COX-2 specific ravine and cleft of 5-LOX.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In situ click chemistry generation of cyclooxygenase-2 inhibitors

          Cyclooxygenase-2 isozyme is a promising anti-inflammatory drug target, and overexpression of this enzyme is also associated with several cancers and neurodegenerative diseases. The amino-acid sequence and structural similarity between inducible cyclooxygenase-2 and housekeeping cyclooxygenase-1 isoforms present a significant challenge to design selective cyclooxygenase-2 inhibitors. Herein, we describe the use of the cyclooxygenase-2 active site as a reaction vessel for the in situ generation of its own highly specific inhibitors. Multi-component competitive-binding studies confirmed that the cyclooxygenase-2 isozyme can judiciously select most appropriate chemical building blocks from a pool of chemicals to build its own highly potent inhibitor. Herein, with the use of kinetic target-guided synthesis, also termed as in situ click chemistry, we describe the discovery of two highly potent and selective cyclooxygenase-2 isozyme inhibitors. The in vivo anti-inflammatory activity of these two novel small molecules is significantly higher than that of widely used selective cyclooxygenase-2 inhibitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prostaglandins and inflammation.

            Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reactive Oxygen Species: Drivers of Physiological and Pathological Processes

              Abstract Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism’s lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.
                Bookmark

                Author and article information

                Journal
                Bioorg Chem
                Bioorganic chemistry
                Elsevier BV
                1090-2120
                0045-2068
                Dec 2022
                : 129
                Affiliations
                [1 ] Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
                [2 ] Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut 25000, UP, India.
                [3 ] Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India.
                [4 ] Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, UP, India.
                [5 ] Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India. Electronic address: skshrivastava.phe@itbhu.ac.in.
                Article
                S0045-2068(22)00553-3
                10.1016/j.bioorg.2022.106147
                36126607
                f58c50ad-63fc-4973-8248-5ff695c00177
                History

                Lipoxygenase,Dual-inhibition,Docking,Cyclooxygenase,Cardiotoxicity,Anti-inflammatory,1,2,4-triazine

                Comments

                Comment on this article