There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Burn injuries are under-appreciated injuries that are associated with substantial
morbidity and mortality. Burn injuries, particularly severe burns, are accompanied
by an immune and inflammatory response, metabolic changes and distributive shock that
can be challenging to manage and can lead to multiple organ failure. Of great importance
is that the injury affects not only the physical health, but also the mental health
and quality of life of the patient. Accordingly, patients with burn injury cannot
be considered recovered when the wounds have healed; instead, burn injury leads to
long-term profound alterations that must be addressed to optimize quality of life.
Burn care providers are, therefore, faced with a plethora of challenges including
acute and critical care management, long-term care and rehabilitation. The aim of
this Primer is not only to give an overview and update about burn care, but also to
raise awareness of the ongoing challenges and stigmata associated with burn injuries.
Burns are a prevalent and burdensome critical care problem. The priorities of specialized facilities focus on stabilizing the patient, preventing infection, and optimizing functional recovery. Research on burns has generated sustained interest over the past few decades, and several important advancements have resulted in more effective patient stabilization and decreased mortality, especially among young patients and those with burns of intermediate extent. However, for the intensivist, challenges often exist that complicate patient support and stabilization. Furthermore, burn wounds are complex and can present unique difficulties that require late intervention or life-long rehabilitation. In addition to improvements in patient stabilization and care, research in burn wound care has yielded advancements that will continue to improve functional recovery. This article reviews recent advancements in the care of burn patients with a focus on the pathophysiology and treatment of burn wounds.
Situations where normal autografts cannot be used to replace damaged skin often lead to a greater risk of mortality, prolonged hospital stay and increased expenditure for the National Health Service. There is a substantial need for tissue-engineered skin bioconstructs and research is active in this field. Significant progress has been made over the years in the development and clinical use of bioengineered components of the various skin layers. Off-the-shelf availability of such constructs, or production of sufficient quantities of biological materials to aid rapid wound closure, are often the only means to help patients with major skin loss. The aim of this review is to describe those materials already commercially available for clinical use as well as to give a short insight to those under development. It seeks to provide skin scientists/tissue engineers with the information required to not only develop in vitro models of skin, but to move closer to achieving the ultimate goal of an off-the-shelf, complete full-thickness skin replacement.
Background Main contributors to adverse outcomes in severely burned pediatric patients are profound and complex metabolic changes in response to the initial injury. It is currently unknown how long these conditions persist beyond the acute phase post-injury. The aim of the present study was to examine the persistence of abnormalities of various clinical parameters commonly utilized to assess the degree hypermetabolic and inflammatory alterations in severely burned children for up to three years post-burn to identify patient specific therapeutic needs and interventions. Methodology/Principal Findings Patients: Nine-hundred seventy-seven severely burned pediatric patients with burns over 30% of the total body surface admitted to our institution between 1998 and 2008 were enrolled in this study and compared to a cohort non-burned, non-injured children. Demographics and clinical outcomes, hypermetabolism, body composition, organ function, inflammatory and acute phase responses were determined at admission and subsequent regular intervals for up to 36 months post-burn. Statistical analysis was performed using One-way ANOVA, Student's t-test with Bonferroni correction where appropriate with significance accepted at p<0.05. Resting energy expenditure, body composition, metabolic markers, cardiac and organ function clearly demonstrated that burn caused profound alterations for up to three years post-burn demonstrating marked and prolonged hypermetabolism, p<0.05. Along with increased hypermetabolism, significant elevation of cortisol, catecholamines, cytokines, and acute phase proteins indicate that burn patients are in a hyperinflammatory state for up to three years post-burn p<0.05. Conclusions Severe burn injury leads to a much more profound and prolonged hypermetabolic and hyperinflammatory response than previously shown. Given the tremendous adverse events associated with the hypermetabolic and hyperinflamamtory responses, we now identified treatment needs for severely burned patients for a much more prolonged time.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.