21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On pollen and airborne virus transmission

      1 , 1
      Physics of Fluids
      AIP Publishing

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d781421e156">This study investigates how airborne pollen pellets (or grains) can cause severe respiratory-related problems in humans. Given that pollen pellets can capture ribonucleic acid viruses, we show that airborne pollen grains could transport airborne virus particles such as the airborne coronavirus (CoV) disease (COVID-19) or others. We consider the environmental conditions featuring the highest pollen concentration season and conduct computational multiphysics, multiscale modeling and simulations. The investigation concerns a prototype problem comprising the transport of 10 <sup>4</sup> airborne pollen grains dropped from a mature willow tree at a wind speed of <span class="inline-formula"> <math display="inline" id="M1" overflow="scroll"> <mo stretchy="false">(</mo> <msub> <mrow> <mi>U</mi> </mrow> <mrow> <mi mathvariant="italic">wind</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi mathvariant="normal">km</mi> <mo>/</mo> <mi mathvariant="normal">h</mi> <mo stretchy="false">)</mo> </math> </span>. We show how pollen grains can increase the coronavirus (CoV) transmission rate in a group of people, including some infected persons. In the case of high pollen grains concentrations in the air or during pollination in the spring, the social distance of 2 m does not hold as a health safety measure for an outdoor crowd. Thus, the public authorities should revise the social distancing guidelines. </p>

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          On coughing and airborne droplet transmission to humans

          Our understanding of the mechanisms of airborne transmission of viruses is incomplete. This paper employs computational multiphase fluid dynamics and heat transfer to investigate transport, dispersion, and evaporation of saliva particles arising from a human cough. An ejection process of saliva droplets in air was applied to mimic the real event of a human cough. We employ an advanced three-dimensional model based on fully coupled Eulerian–Lagrangian techniques that take into account the relative humidity, turbulent dispersion forces, droplet phase-change, evaporation, and breakup in addition to the droplet–droplet and droplet–air interactions. We computationally investigate the effect of wind speed on social distancing. For a mild human cough in air at 20 °C and 50% relative humidity, we found that human saliva-disease-carrier droplets may travel up to unexpected considerable distances depending on the wind speed. When the wind speed was approximately zero, the saliva droplets did not travel 2 m, which is within the social distancing recommendations. However, at wind speeds varying from 4 km/h to 15 km/h, we found that the saliva droplets can travel up to 6 m with a decrease in the concentration and liquid droplet size in the wind direction. Our findings imply that considering the environmental conditions, the 2 m social distance may not be sufficient. Further research is required to quantify the influence of parameters such as the environment’s relative humidity and temperature among others.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            On respiratory droplets and face masks

            Face mask filters—textile, surgical, or respiratory—are widely used in an effort to limit the spread of airborne viral infections. Our understanding of the droplet dynamics around a face mask filter, including the droplet containment and leakage from and passing through the cover, is incomplete. We present a fluid dynamics study of the transmission of respiratory droplets through and around a face mask filter. By employing multiphase computational fluid dynamics in a fully coupled Eulerian–Lagrangian framework, we investigate the droplet dynamics induced by a mild coughing incident and examine the fluid dynamics phenomena affecting the mask efficiency. The model takes into account turbulent dispersion forces, droplet phase-change, evaporation, and breakup in addition to the droplet–droplet and droplet–air interactions. The model mimics real events by using data, which closely resemble cough experiments. The study shows that the criteria employed for assessing the face mask performance must be modified to take into account the penetration dynamics of airborne droplet transmission, the fluid dynamics leakage around the filter, and reduction of efficiency during cough cycles. A new criterion for calculating more accurately the mask efficiency by taking into account the penetration dynamics is proposed. We show that the use of masks will reduce the airborne droplet transmission and will also protect the wearer from the droplets expelled from other subjects. However, many droplets still spread around and away from the cover, cumulatively, during cough cycles. Therefore, the use of a mask does not provide complete protection, and social distancing remains important during a pandemic. The implications of the reduced mask efficiency and respiratory droplet transmission away from the mask are even more critical for healthcare workers. The results of this study provide evidence of droplet transmission prevention by face masks, which can guide their use and further improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

              Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Physics of Fluids
                Physics of Fluids
                AIP Publishing
                1070-6631
                1089-7666
                June 2021
                June 2021
                : 33
                : 6
                : 063313
                Affiliations
                [1 ]University of Nicosia, Nicosia CY-2417, Cyprus
                Article
                10.1063/5.0055845
                f18936f9-b974-4565-9e18-70c878e2ad35
                © 2021
                History

                Comments

                Comment on this article