101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Typhoid Fever and Its Association with Environmental Factors in the Dhaka Metropolitan Area of Bangladesh: A Spatial and Time-Series Approach

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Typhoid fever is a major cause of death worldwide with a major part of the disease burden in developing regions such as the Indian sub-continent. Bangladesh is part of this highly endemic region, yet little is known about the spatial and temporal distribution of the disease at a regional scale. This research used a Geographic Information System to explore, spatially and temporally, the prevalence of typhoid in Dhaka Metropolitan Area (DMA) of Bangladesh over the period 2005–9. This paper provides the first study of the spatio-temporal epidemiology of typhoid for this region. The aims of the study were: (i) to analyse the epidemiology of cases from 2005 to 2009; (ii) to identify spatial patterns of infection based on two spatial hypotheses; and (iii) to determine the hydro-climatological factors associated with typhoid prevalence. Case occurrences data were collected from 11 major hospitals in DMA, geocoded to census tract level, and used in a spatio-temporal analysis with a range of demographic, environmental and meteorological variables. Analyses revealed distinct seasonality as well as age and gender differences, with males and very young children being disproportionately infected. The male-female ratio of typhoid cases was found to be 1.36, and the median age of the cases was 14 years. Typhoid incidence was higher in male population than female (χ 2 = 5.88, p<0.05). The age-specific incidence rate was highest for the 0–4 years age group (277 cases), followed by the 60+ years age group (51 cases), then there were 45 cases for 15–17 years, 37 cases for 18–34 years, 34 cases for 35–39 years and 11 cases for 10–14 years per 100,000 people. Monsoon months had the highest disease occurrences (44.62%) followed by the pre-monsoon (30.54%) and post-monsoon (24.85%) season. The Student's t test revealed that there is no significant difference on the occurrence of typhoid between urban and rural environments (p>0.05). A statistically significant inverse association was found between typhoid incidence and distance to major waterbodies. Spatial pattern analysis showed that there was a significant clustering of typhoid distribution in the study area. Moran's I was highest (0.879; p<0.01) in 2008 and lowest (0.075; p<0.05) in 2009. Incidence rates were found to form three large, multi-centred, spatial clusters with no significant difference between urban and rural rates. Temporally, typhoid incidence was seen to increase with temperature, rainfall and river level at time lags ranging from three to five weeks. For example, for a 0.1 metre rise in river levels, the number of typhoid cases increased by 4.6% (95% CI: 2.4–2.8) above the threshold of 4.0 metres (95% CI: 2.4–4.3). On the other hand, with a 1°C rise in temperature, the number of typhoid cases could increase by 14.2% (95% CI: 4.4–25.0).

          Author Summary

          This research studies the spatial and temporal distribution of typhoid infections in the Dhaka metropolitan area of Bangladesh in the period 2005 to 2009. Data from hospital admission records was analysed together with a range of demographic, environmental and climatic data, in what is believed to be the first study of this nature; clear periodicity was found in the timing of case occurrences, with most cases occurring in the monsoon season. Men and very young children appear to be at greatest risk of contracting the disease. Closeness to rivers was also found to be a contributor to increased typhoid risk. While a difference in rates between urban and rural locations suggested by other studies was not found, distinct clustering of the disease was uncovered. Two of these clusters are located in central Dhaka with a third in the north of the metropolitan area.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The Association Between Extreme Precipitation and Waterborne Disease Outbreaks in the United States, 1948–1994

          Rainfall and runoff have been implicated in site-specific waterborne disease outbreaks. Because upward trends in heavy precipitation in the United States are projected to increase with climate change, this study sought to quantify the relationship between precipitation and disease outbreaks. The US Environmental Protection Agency waterborne disease database, totaling 548 reported outbreaks from 1948 through 1994, and precipitation data of the National Climatic Data Center were used to analyze the relationship between precipitation and waterborne diseases. Analyses were at the watershed level, stratified by groundwater and surface water contamination and controlled for effects due to season and hydrologic region. A Monte Carlo version of the Fisher exact test was used to test for statistical significance. Fifty-one percent of waterborne disease outbreaks were preceded by precipitation events above the 90th percentile (P = .002), and 68% by events above the 80th percentile (P = .001). Outbreaks due to surface water contamination showed the strongest association with extreme precipitation during the month of the outbreak; a 2-month lag applied to groundwater contamination events. The statistically significant association found between rainfall and disease in the United States is important for water managers, public health officials, and risk assessors of future climate change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Typhoid and paratyphoid fever.

            Typhoid fever is estimated to have caused 21.6 million illnesses and 216,500 deaths globally in 2000, affecting all ages. There is also one case of paratyphoid fever for every four of typhoid. The global emergence of multidrug-resistant strains and of strains with reduced susceptibility to fluoroquinolones is of great concern. We discuss the occurrence of poor clinical response to fluoroquinolones despite disc sensitivity. Developments are being made in our understanding of the molecular pathogenesis, and genomic and proteomic studies reveal the possibility of new targets for diagnosis and treatment. Further, we review guidelines for use of diagnostic tests and for selection of antimicrobials in varying clinical situations. The importance of safe water, sanitation, and immunisation in the presence of increasing antibiotic resistance is paramount. Routine immunisation of school-age children with Vi or Ty21a vaccine is recommended for countries endemic for typhoid. Vi vaccine should be used for 2-5 year-old children in highly endemic settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A study of typhoid fever in five Asian countries: disease burden and implications for controls.

              To inform policy-makers about introduction of preventive interventions against typhoid, including vaccination. A population-based prospective surveillance design was used. Study sites where typhoid was considered a problem by local authorities were established in China, India, Indonesia, Pakistan and Viet Nam. Standardized clinical, laboratory, and surveillance methods were used to investigate cases of fever of >or= 3 days' duration for a one-year period. A total of 441,435 persons were under surveillance, 159,856 of whom were aged 5-15 years. A total of 21,874 episodes of fever were detected. Salmonella typhi was isolated from 475 (2%) blood cultures, 57% (273/475) of which were from 5-15 year-olds. The annual typhoid incidence (per 100,000 person years) among this age group varied from 24.2 and 29.3 in sites in Viet Nam and China, respectively, to 180.3 in the site in Indonesia; and to 412.9 and 493.5 in sites in Pakistan and India, respectively. Altogether, 23% (96/413) of isolates were multidrug resistant (chloramphenicol, ampicillin and trimethoprim-sulfamethoxazole). The incidence of typhoid varied substantially between sites, being high in India and Pakistan, intermediate in Indonesia, and low in China and Viet Nam. These findings highlight the considerable, but geographically heterogeneous, burden of typhoid fever in endemic areas of Asia, and underscore the importance of evidence on disease burden in making policy decisions about interventions to control this disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                January 2013
                24 January 2013
                : 7
                : 1
                : e1998
                Affiliations
                [1 ]Department of Spatial Sciences, Curtin University Western Australia, Bentley, Western Australia, Australia
                [2 ]Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
                University of California, San Diego School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AMD RC MH. Performed the experiments: AMD MH ETO RC. Analyzed the data: AMD MH ETO RC. Wrote the paper: AMD RC MH.

                Article
                PNTD-D-12-00740
                10.1371/journal.pntd.0001998
                3554574
                23359825
                23662327-dfc5-4c6c-9157-909a860a9219
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2012
                : 20 November 2012
                Page count
                Pages: 14
                Funding
                This study was supported in part by project W4656-1 of the International Foundation for Science, Sweden, while AMD was on the staff of Dhaka University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Computer Science
                Geoinformatics
                Spatial Autocorrelation
                Earth Sciences
                Geography
                Human Geography
                Spatial Analysis
                Medicine
                Epidemiology
                Environmental Epidemiology
                Spatial Epidemiology
                Global Health
                Infectious Diseases
                Infectious Disease Modeling
                Neglected Tropical Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article