18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Change in physical activity from adolescence to early adulthood: a systematic review and meta-analysis of longitudinal cohort studies

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective To systematically review and meta-analyse how physical activity (PA) changes from adolescence to early adulthood (13–30 years). Data sources Seven electronic databases were searched: Medline, Embase, PsycInfo, SCOPUS, ASSIA, SPORTdiscus and Web of Science. Eligibility criteria for selecting studies English-language, longitudinal studies (from 01/1980 to 01/2017) assessing PA ≥twice, with the mean age of ≥1 measurement in adolescence (13–19 years) and ≥1 in young adulthood (16–30 years) were included. Where possible, data were converted to moderate-to-vigorous physical activity (MVPA) min/day, and meta-analyses were conducted between weighted mean differences (WMDs) in adolescence and adulthood. Heterogeneity was explored using meta-regression. Results Of 67 included studies, 49 were eligible for meta-analysis. PA was lower during adulthood than adolescence WMD (95% CI) −5.2 (−7.3 to –3.1) min/day MVPA over mean (SD) 3.4 (2.6) years; heterogeneity was high (I2 >99.0%), and no predictors explained this variation (all p>0.05). When we restricted analysis to studies with data for males (n=29) and females (n=30) separately, there were slightly larger declines in WMD (−6.5 (−10.6 to –2.3) and −5.5 (−8.4 to −2.6) min/day MVPA) (both I2 >99.0%). For studies with accelerometer data (n=9), the decline was −7.4 (−11.6 to –3.1) and longer follow-up indicated more of a decline in WMD (95% CI) (−1.9 (−3.6 to –0.2) min/day MVPA), explaining 27.0% of between-study variation. Of 18 studies not eligible for meta-analysis, nine statistically tested change over time: seven showed a decline and two showed no change. Conclusion PA declines modestly between adolescence and young adulthood. More objective longitudinal PA data (eg, accelerometry) over this transition would be valuable, as would investigating how PA change is associated with contemporaneous social transitions to better inform PA promotion interventions. Registration PROSPERO ref:CRD42015030114.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Physical activity from childhood to adulthood: a 21-year tracking study.

          The aim of this study was to investigate stability of physical activity from childhood and adolescence to adulthood in multiple age cohorts, and analyze how well adult physical activity can be predicted by various physical activity variables measured in childhood and adolescence. The data were drawn from the Cardiovascular Risk in Young Finns Study. The study was started in 1980, when cohorts of randomly sampled boys and girls aged 3, 6, 9, 12, 15, and 18 years (total of 2309 subjects) were examined for the first time. The measurements were repeated in 1983, 1986, 1989, 1992, and 2001. In 2001, the subjects (n =1563, 68%) were aged 24, 27, 30, 33, 36, and 39 years, respectively. Physical activity was measured by means of a short self-report questionnaire that was administered individually in connection with a medical examination. On the basis of a questionnaire, a physical activity index (PAI) was calculated. There were no significant differences in the 1980 PAI between participants and dropouts in 2001. Spearmans rank order correlation coefficients for the 21-year tracking period varied from 0.33 to 0.44 in males, and from 0.14 to 0.26 in females. At shorter time intervals the correlation was higher. On average, the tracking correlation was lower in females than in males. Persistent physical activity, defined as a score in the most active third of the PAI in two or three consecutive measurements, increased the odds that an individual would be active in adulthood. Odds ratios for 3-year continuous activity versus continuous inactivity varied from 4.30 to 7.10 in males and 2.90 to 5.60 in females. The corresponding odds ratios for 6-year persistence were 8.70 to 10.80 and 5.90 to 9.40. It was concluded that a high level of physical activity at ages 9 to 18, especially when continuous, significantly predicted a high level of adult physical activity. Although the correlations were low or moderate, we consider it important that school-age physical activity appears to influence adult physical activity, and through it, the public health of the general population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment.

            To describe the prospective relationship between physical activity and academic performance. Prospective studies were identified from searches in PubMed, PsycINFO, Cochrane Central, and Sportdiscus from 1990 through 2010. We screened the titles and abstracts for eligibility, rated the methodological quality of the studies, and extracted data. Studies had to report at least 1 physical activity or physical fitness measurement during childhood or adolescence. Studies had to report at least 1 academic performance or cognition measure during childhood or adolescence. We identified 10 observational and 4 intervention studies. The quality score of the studies ranged from 22% to 75%. Two studies were scored as high quality. Methodological quality scores were particularly low for the reliability and validity of the measurement instruments. Based on the results of the best-evidence synthesis, we found evidence of a significant longitudinal positive relationship between physical activity and academic performance. Participation in physical activity is positively related to academic performance in children. Because we found only 2 high-quality studies, future high-quality studies are needed to confirm our findings. These studies should thoroughly examine the dose-response relationship between physical activity and academic performance as well as explanatory mechanisms for this relationship.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identifying outcome reporting bias in randomised trials on PubMed: review of publications and survey of authors.

              To examine the extent and nature of outcome reporting bias in a broad cohort of published randomised trials. Retrospective review of publications and follow up survey of authors. Cohort All journal articles of randomised trials indexed in PubMed whose primary publication appeared in December 2000. Prevalence of incompletely reported outcomes per trial; reasons for not reporting outcomes; association between completeness of reporting and statistical significance. 519 trials with 553 publications and 10,557 outcomes were identified. Survey responders (response rate 69%) provided information on unreported outcomes but were often unreliable--for 32% of those who denied the existence of such outcomes there was evidence to the contrary in their publications. On average, over 20% of the outcomes measured in a parallel group trial were incompletely reported. Within a trial, such outcomes had a higher odds of being statistically non-significant compared with fully reported outcomes (odds ratio 2.0 (95% confidence interval 1.6 to 2.7) for efficacy outcomes; 1.9 (1.1 to 3.5) for harm outcomes). The most commonly reported reasons for omitting efficacy outcomes included space constraints, lack of clinical importance, and lack of statistical significance. Incomplete reporting of outcomes within published articles of randomised trials is common and is associated with statistical non-significance. The medical literature therefore represents a selective and biased subset of study outcomes, and trial protocols should be made publicly available.
                Bookmark

                Author and article information

                Journal
                British Journal of Sports Medicine
                Br J Sports Med
                BMJ
                0306-3674
                1473-0480
                July 24 2017
                :
                :
                : bjsports-2016-097330
                Article
                10.1136/bjsports-2016-097330
                2e2d8de5-94be-4715-aa9f-1882bd6db9d0
                © 2017
                History

                Comments

                Comment on this article