18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhanced transduction of CAR-negative cells by protein IX-gene deleted adenovirus 5 vectors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In human adenoviruses (HAdV), 240 copies of the 14.3-kDa minor capsid protein IX stabilize the capsid. Three N-terminal domains of protein IX form triskelions between hexon capsomers. The C-terminal domains of four protein IX monomers associate near the facet periphery. The precise biological role of protein IX remains enigmatic. Here we show that deletion of the protein IX gene from a HAdV-5 vector enhanced the reporter gene delivery 5 to 25-fold, specifically to Coxsackie and Adenovirus Receptor (CAR)-negative cell lines. Deletion of the protein IX gene also resulted in enhanced activation of peripheral blood mononuclear cells. The mechanism for the enhanced transduction is obscure. No differences in fiber loading, integrin-dependency of transduction, or factor-X binding could be established between protein IX-containing and protein IX-deficient particles. Our data suggest that protein IX can affect the cell tropism of HAdV-5, and may function to dampen the innate immune responses against HAdV particles.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.

          A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simplified system for generating recombinant adenoviruses.

            Recombinant adenoviruses provide a versatile system for gene expression studies and therapeutic applications. We report herein a strategy that simplifies the generation and production of such viruses. A recombinant adenoviral plasmid is generated with a minimum of enzymatic manipulations, using homologous recombination in bacteria rather than in eukaryotic cells. After transfections of such plasmids into a mammalian packaging cell line, viral production is conveniently followed with the aid of green fluorescent protein, encoded by a gene incorporated into the viral backbone. Homogeneous viruses can be obtained from this procedure without plaque purification. This system should expedite the process of generating and testing recombinant adenoviruses for a variety of purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors.

              Currently, the preferred host for the production of early region-1 (E1)-deleted recombinant adenoviruses (rAdV) is cell line 293, which was generated by transformation of human embryonic kidney cells by sheared adenovirus 5 (Ad5) DNA. To develop alternative hosts for the production of rAdV, we generated adenovirus-transformed human cell lines by transformation of human embryonic retinoblasts (HER) with a plasmid containing base pairs 79-5789 of the Ad5 genome. One of the established HER cell lines, which we called 911, exhibited favorable growth characteristics and was chosen for further study. This cell line is demonstrated to have several characteristics in common with the well-known 293 cell line: The 911 cell line is highly transfectable, and exhibits similar frequencies of homologous recombination. However, it has additional characteristics that make it a useful alternative for 293. The 911 cells perform particularly well in plaque assays. Upon infection with E1-deleted adenoviruses, plaques become apparent in monolayers of 911 cells already after 3-4 days versus 4-10 days in monolayers of 293 cells, thereby reducing the time required for quantitative plaque assays. Furthermore, yields of E1-deleted adenovirus vectors up to three times as high as those achieved with 293 cells can be obtained with 911 cells. Finally, the Ad5-DNA content of the 911 cell line is completely known. These features make the 911 cell line a useful alternative for the construction, propagation, and titration of E1-deleted recombinant adenoviruses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virology
                Virology
                Virology
                Elsevier Inc. Published by Elsevier Inc.
                0042-6822
                1096-0341
                4 December 2010
                5 February 2011
                4 December 2010
                : 410
                : 1
                : 192-200
                Affiliations
                [a ]Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
                [b ]Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
                [c ]Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
                [d ]Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands
                Author notes
                [* ]Corresponding author. Department of Molecular Cell Biology, Leiden University Medical Center/mail stop S1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands. Fax: +31 71 526 8270. R.C.Hoeben@ 123456lumc.nl
                Article
                S0042-6822(10)00702-6
                10.1016/j.virol.2010.10.040
                7111976
                21130482
                4ab827c5-054c-4c54-9ae1-6e26ac26b5a3
                Copyright © 2010 Elsevier Inc. Published by Elsevier Inc.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 29 June 2010
                : 13 October 2010
                : 29 October 2010
                Categories
                Article

                Microbiology & Virology
                adenovirus,coxsackie virus and adenovirus receptor,protein ix,gene therapy

                Comments

                Comment on this article