14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Candida is a genus of yeasts and is the most common cause of fungal infections worldwide. However, only a few antifungal drugs are currently available for the treatment of Candida infections. In the last decade, terpenophenols have attracted much attention because they often possess a variety of biological activities. In the search for new antifungals, eight carveoylphenols were synthesized and characterized by spectroscopic analysis. By using the broth microdilution assay, the compounds were evaluated for antifungal activities in vitro against four human pathogenic yeast, and structure–activity relationships (SAR) were derived. Noteworthy, in this preliminary study, compounds 5 and 6, have shown a significant reduction in the growth of all Candida strains tested. Starting from these preliminary results, we have designed the second generation of analogous in this class, and further studies are in progress in our laboratories.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of Antifungal Drug Resistance.

          Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases

            Oral diseases are major health problems with dental caries and periodontal diseases among the most important preventable global infectious diseases. Oral health influences the general quality of life and poor oral health is linked to chronic conditions and systemic diseases. The association between oral diseases and the oral microbiota is well established. Of the more than 750 species of bacteria that inhabit the oral cavity, a number are implicated in oral diseases. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria (mutans streptococci, lactobacilli and actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Given the incidence of oral disease, increased resistance by bacteria to antibiotics, adverse affects of some antibacterial agents currently used in dentistry and financial considerations in developing countries, there is a need for alternative prevention and treatment options that are safe, effective and economical. While several agents are commercially available, these chemicals can alter oral microbiota and have undesirable side-effects such as vomiting, diarrhea and tooth staining. Hence, the search for alternative products continues and natural phytochemicals isolated from plants used as traditional medicines are considered as good alternatives. In this review, plant extracts or phytochemicals that inhibit the growth of oral pathogens, reduce the development of biofilms and dental plaque, influence the adhesion of bacteria to surfaces and reduce the symptoms of oral diseases will be discussed further. Clinical studies that have investigated the safety and efficacy of such plant-derived medicines will also be described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Epidemiology and Outcomes of Invasive Candidiasis Due to Non-albicans Species of Candida in 2,496 Patients: Data from the Prospective Antifungal Therapy (PATH) Registry 2004–2008

              This analysis describes the epidemiology and outcomes of invasive candidiasis caused by non-albicans species of Candida in patients enrolled in the Prospective Antifungal Therapy Alliance (PATH Alliance) registry from 2004 to 2008. A total of 2,496 patients with non-albicans species of Candida isolates were identified. The identified species were C. glabrata (46.4%), C. parapsilosis (24.7%), C. tropicalis (13.9%), C. krusei (5.5%), C. lusitaniae (1.6%), C. dubliniensis (1.5%) and C. guilliermondii (0.4%); 111 infections involved two or more species of Candida (4.4%). Non-albicans species accounted for more than 50% of all cases of invasive candidiasis in 15 of the 24 sites (62.5%) that contributed more than one case to the survey. Among solid organ transplant recipients, patients with non-transplant surgery, and patients with solid tumors, the most prevalent non-albicans species was C. glabrata at 63.7%, 48.0%, and 53.8%, respectively. In 1,883 patients receiving antifungal therapy on day 3, fluconazole (30.5%) and echinocandins (47.5%) were the most frequently administered monotherapies. Among the 15 reported species, 90-day survival was highest for patients infected with either C. parapsilosis (70.7%) or C. lusitaniae (74.5%) and lowest for patients infected with an unknown species (46.7%) or two or more species (53.2%). In conclusion, this study expands the current knowledge of the epidemiology and outcomes of invasive candidiasis caused by non-albicans species of Candida in North America. The variability in species distribution in these centers underscores the importance of local epidemiology in guiding the selection of antifungal therapy.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                15 October 2019
                December 2019
                : 8
                : 4
                : 185
                Affiliations
                [1 ]Escuela de Obstetricia y Puericultura, Facultad de medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile; ivan.montenegro@ 123456uv.cl
                [2 ]Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso 2340000, Chile; marco.mellado@ 123456pucv.cl
                [3 ]Department of Drug Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy; alrusso@ 123456unict.it
                [4 ]Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura 7630000, Santiago, Chile; bastian.said@ 123456usm.cl
                [5 ]Escuela de Agronomía Pontificia Universidad Católica de Valparaíso, Quillota, SanFrancisco s/n La Palma, Quillota 2260000, Chile; ximena.besoain@ 123456pucv.cl
                [6 ]Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Los Laureles s/n, Isla Teja, Valdivia 5090000, Chile; patricio.godoy@ 123456uach.cl
                [7 ]Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío, Avda. Andrés Bello 720, casilla 447, Chillán 3780000, Chile; ewerner@ 123456ubiobio.cl
                [8 ]Centro de Investigación Australbiotech, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile; ncaro@ 123456australbiotech.cl
                [9 ]Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
                Author notes
                [* ]Correspondence: alejandro.madrid@ 123456upla.cl ; Tel.: +56-032-250-0526
                Author information
                https://orcid.org/0000-0001-9577-5180
                https://orcid.org/0000-0003-2925-6600
                Article
                antibiotics-08-00185
                10.3390/antibiotics8040185
                6963845
                31618883
                c4631843-5d67-4679-b19e-e7efe993daca
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 September 2019
                : 12 October 2019
                Categories
                Article

                carveol,carveoylphenols,titanium tetrachloride,antifungal,candida sp.

                Comments

                Comment on this article