4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is an evolutionarily conserved catabolic process that plays an essential role in maintaining cellular homeostasis by degrading unneeded cell components. When exposed to hostile environments, such as hypoxia or nutrient starvation, cells hyperactivate autophagy in an effort to maintain their longevity. In densely packed solid tumors, such as glioblastoma, autophagy has been found to run rampant due to a lack of oxygen and nutrients. In recent years, targeting autophagy as a way to strengthen current glioblastoma treatment has shown promising results. However, that protective autophagy inhibition or autophagy overactivation is more beneficial, is still being debated. Protective autophagy inhibition would lower a cell’s previously activated defense mechanism, thereby increasing its sensitivity to treatment. Autophagy overactivation would cause cell death through lysosomal overactivation, thus introducing another cell death pathway in addition to apoptosis. Both methods have been proven effective in the treatment of solid tumors. This systematic review article highlights scenarios where both autophagy inhibition and activation have proven effective in combating chemoresistance and radioresistance in glioblastoma, and how autophagy may be best utilized for glioblastoma therapy in clinical settings.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cancer and Radiation Therapy: Current Advances and Future Directions

          In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division) potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase.

            A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme

              Preclinical studies indicate autophagy inhibition with hydroxychloroquine (HCQ) can augment the efficacy of DNA-damaging therapy. The primary objective of this trial was to determine the maximum tolerated dose (MTD) and efficacy of HCQ in combination with radiation therapy (RT) and temozolomide (TMZ) for newly diagnosed glioblastoma (GB). A 3 + 3 phase I trial design followed by a noncomparative phase II study was conducted in GB patients after initial resection. Patients received HCQ (200 to 800 mg oral daily) with RT and concurrent and adjuvant TMZ. Quantitative electron microscopy and immunoblotting were used to assess changes in autophagic vacuoles (AVs) in peripheral blood mononuclear cells (PBMC). Population pharmacokinetic (PK) modeling enabled PK-pharmacodynamic correlations. Sixteen phase I subjects were evaluable for dose-limiting toxicities. At 800 mg HCQ/d, 3/3 subjects experienced Grade 3 and 4 neutropenia and thrombocytopenia, 1 with sepsis. HCQ 600 mg/d was found to be the MTD in this combination. The phase II cohort (n = 76) had a median survival of 15.6 mos with survival rates at 12, 18, and 24 mo of 70%, 36%, and 25%. PK analysis indicated dose-proportional exposure for HCQ. Significant therapy-associated increases in AV and LC3-II were observed in PBMC and correlated with higher HCQ exposure. These data establish that autophagy inhibition is achievable with HCQ, but dose-limiting toxicity prevented escalation to higher doses of HCQ. At HCQ 600 mg/d, autophagy inhibition was not consistently achieved in patients treated with this regimen, and no significant improvement in overall survival was observed. Therefore, a definitive test of the role of autophagy inhibition in the adjuvant setting for glioma patients awaits the development of lower-toxicity compounds that can achieve more consistent inhibition of autophagy than HCQ.
                Bookmark

                Author and article information

                Journal
                9712129
                20858
                Apoptosis
                Apoptosis
                Apoptosis : an international journal on programmed cell death
                1360-8185
                1573-675X
                4 September 2018
                December 2018
                01 December 2019
                : 23
                : 11-12
                : 563-575
                Affiliations
                [1 ]University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
                [2 ]Icahn School of Medicine at Mount Sinai, Departments of Medicine and Pharmacological Sciences, New York, NY 10029, USA
                Author notes
                [* ]Corresponding authors: Swapan K. Ray, PhD, Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Building 2, Room C11, 6439 Garners Ferry Road, Columbia, SC 29209, USA. Phone: 803-216-3420; Fax: 803-216-3428; swapan.ray@ 123456uscmed.sc.edu
                Article
                PMC6193815 PMC6193815 6193815 nihpa1505563
                10.1007/s10495-018-1480-9
                6193815
                30171377
                3fae6588-e5bf-4b1c-88f1-1e45f57f23ae
                History
                Categories
                Article

                Radioresistance,Glioblastoma,Chemoresistance,Cell Death,Autophagy

                Comments

                Comment on this article