25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes.

      Nature genetics
      Adult, Case-Control Studies, Child, Diabetes Mellitus, Type 2, genetics, Genetic Predisposition to Disease, Glucose Tolerance Test, Haplotypes, Humans, Obesity, Phosphoric Diester Hydrolases, Pyrophosphatases, RNA, Messenger

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We identified a locus on chromosome 6q16.3-q24.2 (ref. 1) associated with childhood obesity that includes 2.4 Mb common to eight genome scans for type 2 diabetes (T2D) or obesity. Analysis of the gene ENPP1 (also called PC-1), a candidate for insulin resistance, in 6,147 subjects showed association between a three-allele risk haplotype (K121Q, IVS20delT-11 and A-->G+1044TGA; QdelTG) and childhood obesity (odds ratio (OR) = 1.69, P = 0.0006), morbid or moderate obesity in adults (OR = 1.50, P = 0.006 or OR = 1.37, P = 0.02, respectively) and T2D (OR = 1.56, P = 0.00002). The Genotype IBD Sharing Test suggested that this obesity-associated ENPP1 risk haplotype contributes to the observed chromosome 6q linkage with childhood obesity. The haplotype confers a higher risk of glucose intolerance and T2D to obese children and their parents and associates with increased serum levels of soluble ENPP1 protein in children. Expression of a long ENPP1 mRNA isoform, which includes the obesity-associated A-->G+1044TGA SNP, was specific for pancreatic islet beta cells, adipocytes and liver. These findings suggest that several variants of ENPP1 have a primary role in mediating insulin resistance and in the development of both obesity and T2D, suggesting that an underlying molecular mechanism is common to both conditions.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus.

          Insulin secretory responses to paired intravenous and oral glucose loads were determined in 38 nonobese individuals classified as normal (nondiabetic) subjects, "mild" diabetics (fasting blood glucose below 105 mg per 100 ml), or "moderate" diabetics (fasting glucose below 192 mg per 100 ml). Studies were also performed in 29 obese persons who were similarly grouped. The intravenous load was given to assess the alacrity of hormonal release after glycemic stimulus, and the oral glucose to determine how the speed of initial insulinogenesis modifies the disposition of ingested carbohydrate. In the nonobese group, normal subjects responded to massive hyperglycemia after rapid injection of glucose with immediate and maximal outpouring of insulin, in contrast to a desultory insulinogenic response in patients with mild diabetes, and no initial response at all in moderate diabetics. During oral glucose tolerance tests, the much faster clearance of blood sugar in nondiabetic subjects was actually associated with lower absolute insulin output than was found in mildly diabetic patients, since the latter exhibited delayed hyperinsulinemia in concert with prolonged hyperglycemia. Moderate diabetics never showed excessive insulin release despite even greater hyperglycemia. An empirical "insulinogenic index," the ratio relating enhancement of circulating insulin to magnitude of corresponding glycemic stimulus, was used to compare the secretory capacities of respective groups. Despite the higher absolute hormonal output after oral glucose in mild diabetics, the index revealed that insulin release in normal subjects was proportionally more than twice as great. This relatively greater normal secretory response declared itself shortly after the administration of glucose by either route, and was maintained throughout both tests. In the 29 obese individuals, differences among groups were essentially the same as in persons of normal weight. Obese nondiabetics did show much larger absolute insulinogenic responses during both tests than did nonobese controls. Since corresponding glucose tolerance curves were also higher, the mean insulinogenic indexes for obese subjects were not statistically greater. Moreover, when comparable glucose curves of obese and nonobese controls
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Role of Brain Insulin Receptor in Control of Body Weight and Reproduction

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification.

              Inogranic pyrophosphate (PPi) inhibits hydroxyapatite deposition, and mice deficient in the PPi-generating nucleoside triphosphate pyrophosphohydrolase (NTPPPH) Plasma cell membrane glycoprotein-1 (PC-1) develop peri-articular and arterial calcification in early life. In idiopathic infantile arterial calcification (IIAC), hydroxyapatite deposition and smooth muscle cell (SMC) proliferation occur, sometimes associated with peri-articular calcification. Thus, we assessed PC-1 expression and PPi metabolism in a 25-month-old boy with IIAC and peri-articular calcifications. Plasma PC-1 was <1 ng/ml by enzyme-linked immunosorbent assay in the proband, but 10 to 30 ng/ml in unaffected family members and controls. PC-1 functioned to raise extracellular PPi in cultured aortic SMCs. However, PC-1 was sparse in temporal artery lesion SMCs in the proband, unlike the case for SMCs in atherosclerotic carotid artery lesions of unrelated adults. Proband plasma and explant-cultured dermal fibroblast NTPPPH and PPi were markedly decreased. The proband was heterozygous at the PC-1 locus, and sizes of PC-1 mRNA and polypeptide, and the PC-1 mRNA-coding region sequence were normal in proband fibroblasts. However, immunoreactive PC-1 protein was relatively sparse in proband fibroblasts. In conclusion, deficient extracellular PPi and a deficiency of PC-1 NTPPPH activity can be associated with human infantile arterial and peri-articular calcification, and may help explain the sharing of certain phenotypic features between some IIAC patients and PC-1-deficient mice.
                Bookmark

                Author and article information

                Comments

                Comment on this article