Dielectric nanoresonators have been shown to circumvent the heavy optical losses associated with plasmonic devices; however, they suffer from less confined resonances. By constructing a hybrid system of both dielectric and metallic materials, one can retain low losses, while achieving stronger mode confinement. Here, we use a high refractive index multilayer transition-metal dichalcogenide WS 2 exfoliated on gold to fabricate and optically characterize a hybrid nanoantenna-on-gold system. We experimentally observe a hybridization of Mie resonances, Fabry–Perot modes, and surface plasmon-polaritons launched from the nanoantennas into the substrate. We measure the experimental quality factors of hybridized Mie–plasmonic (MP) modes to be up to 33 times that of standard Mie resonances in the nanoantennas on silica. We then tune the nanoantenna geometries to observe signatures of a supercavity mode with a further increased Q factor of over 260 in experiment. We show that this quasi-bound state in the continuum results from strong coupling between a Mie resonance and Fabry–Perot-plasmonic mode in the vicinity of the higher-order anapole condition. We further simulate WS 2 nanoantennas on gold with a 5 nm thick hBN spacer in between. By placing a dipole within this spacer, we calculate the overall light extraction enhancement of over 10 7, resulting from the strong, subwavelength confinement of the incident light, a Purcell factor of over 700, and high directivity of the emitted light of up to 50%. We thus show that multilayer TMDs can be used to realize simple-to-fabricate, hybrid dielectric-on-metal nanophotonic devices granting access to high- Q, strongly confined, MP resonances, along with a large enhancement for emitters in the TMD–gold gap.