3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generation of Bulk Nanobubbles by Self-Developed Venturi-Type Circulation Hydrodynamic Cavitation Device.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bulk nanobubbles (BNBs) have attracted substantial interest from academia and industry owing to their peculiar properties and extensive potential applications. However, a scalable engineering method needs to be developed. Herein, we developed a nanobubble generator based on venturi-type recirculating hydrodynamic cavitation. The existence of nanobubbles produced by our generator was confirmed using physicochemical test methods, including the Tyndall effect, multiple freeze-thaw degassing experiments, and trace metal analysis. Subsequently, the effects of different operating parameters (circulation time and operating pressure) on bulk nanobubble production and properties, as well as their stability, were investigated. The results suggest that the characteristics of BNBs varied with the circulation time (5-20 min) and operating pressure (2-5 bar). However, all the particle size distribution of BNBs had a bimodal distribution with a mean diameter of 180-210 nm for the different circulation time and operating pressures. For example, by increasing the circulation time from 5 to 20 min, the peak value of size distribution decreased from 333/122 nm to 218/52 nm, and the average sample scattering signal count rate (Avg. Count Rate) increased from 133 to 303 Kcps. The evaluation of the stability of the BNBs formed for the circulation time of 15 min and the operating pressure of 3 bar showed that they could continue existence and stability in the suspension for 72 h. The study results might provide a valuable method for further investigation of industrial applications of venturi-type nanobubble generators.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          Nov 09 2021
          : 37
          : 44
          Affiliations
          [1 ] School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
          Article
          10.1021/acs.langmuir.1c02010
          34714096
          1fc4d889-5757-4bfd-8687-57c216d9869f
          History

          Comments

          Comment on this article