21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chemoproteomic Profiling of Gut Microbiota-Associated Bile Salt Hydrolase Activity

      , , , , ,
      ACS Central Science
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The metagenome of the gut microbiome encodes tremendous potential for biosynthesizing and transforming small-molecule metabolites through the activities of enzymes expressed by intestinal bacteria. Accordingly, elucidating this metabolic network is critical for understanding how the gut microbiota contributes to health and disease. Bile acids, which are first biosynthesized in the liver, are modified in the gut by enzymes expressed by commensal bacteria into secondary bile acids, which regulate myriad host processes, including lipid metabolism, glucose metabolism, and immune homeostasis. The gateway reaction of secondary bile acid biosynthesis is mediated by bile salt hydrolases (BSHs), bacterial cysteine hydrolases whose action precedes other bile acid modifications within the gut. To assess how changes in bile acid metabolism mediated by certain intestinal microbiota impact gut physiology and pathobiology, methods are needed to directly examine the activities of BSHs because they are master regulators of intestinal bile acid metabolism. Here, we developed chemoproteomic tools to profile changes in gut microbiome-associated BSH activity. We showed that these probes can label active BSHs in model microorganisms, including relevant gut anaerobes, and in mouse gut microbiomes. Using these tools, we identified altered BSH activities in a murine model of inflammatory bowel disease, in this case, colitis induced by dextran sodium sulfate, leading to changes in bile acid metabolism that could impact host metabolism and immunity. Importantly, our findings reveal that alterations in BSH enzymatic activities within the gut microbiome do not correlate with changes in gene abundance as determined by metagenomic sequencing, highlighting the utility of chemoproteomic approaches for interrogating the metabolic activities of the gut microbiota.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease.

          Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA-SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with predefined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases.

            Gut microbiota metabolises bile acids (BA). As dysbiosis has been reported in inflammatory bowel diseases (IBD), we aim to investigate the impact of IBD-associated dysbiosis on BA metabolism and its influence on the epithelial cell inflammation response. Faecal and serum BA rates, expressed as a proportion of total BA, were assessed by high-performance liquid chromatography tandem mass spectrometry in colonic IBD patients (42) and healthy subjects (29). The faecal microbiota composition was assessed by quantitative real-time PCR. Using BA profiles and microbiota composition, cluster formation between groups was generated by ranking models. The faecal BA profiles in germ-free and conventional mice were compared. Direct enzymatic activities of BA biotransformation were measured in faeces. The impact of BA on the inflammatory response was investigated in vitro using Caco-2 cells stimulated by IL-1β. IBD-associated dysbiosis was characterised by a decrease in the ratio between Faecalibacterium prausntizii and Escherichia coli. Faecal-conjugated BA rates were significantly higher in active IBD, whereas, secondary BA rates were significantly lower. Interestingly, active IBD patients exhibited higher levels of faecal 3-OH-sulphated BA. The deconjugation, transformation and desulphation activities of the microbiota were impaired in IBD patients. In vitro, secondary BA exerted anti-inflammatory effects, but sulphation of secondary BAs abolished their anti-inflammatory properties. Impaired microbiota enzymatic activity observed in IBD-associated dysbiosis leads to modifications in the luminal BA pool composition. Altered BA transformation in the gut lumen can erase the anti-inflammatory effects of some BA species on gut epithelial cells and could participate in the chronic inflammation loop of IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Finding the right (bioorthogonal) chemistry.

              Bioorthogonal chemistries can be used to tag diverse classes of biomolecules in cells and other complex environments. With over 20 unique transformations now available, though, selecting an appropriate reaction for a given experiment is challenging. In this article, we compare and contrast the most common classes of bioorthogonal chemistries and provide a framework for matching the reactions with downstream applications. We also discuss ongoing efforts to identify novel biocompatible reactions and methods to control their reactivity. The continued expansion of the bioorthogonal toolkit will provide new insights into biomolecule networks and functions and thus refine our understanding of living systems.
                Bookmark

                Author and article information

                Journal
                ACS Central Science
                ACS Cent. Sci.
                American Chemical Society (ACS)
                2374-7943
                2374-7951
                April 18 2019
                April 18 2019
                Article
                10.1021/acscentsci.9b00147
                8a3d7304-0e9a-4283-8ad2-f4de09a3730d
                © 2019

                http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

                History

                Comments

                Comment on this article