5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pediatric acute myeloid leukemia: updates on biology, risk stratification, and therapy

      ,
      Current Opinion in Pediatrics
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation

          Patients with acute myeloid leukemia (AML) and a FLT3 mutation have poor outcomes. We conducted a phase 3 trial to determine whether the addition of midostaurin - an oral multitargeted kinase inhibitor that is active in patients with a FLT3 mutation - to standard chemotherapy would prolong overall survival in this population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Targeting FLT3 mutations in AML: review of current knowledge and evidence

            Genomic investigations of acute myeloid leukemia (AML) have demonstrated that several genes are recurrently mutated, leading to new genomic classifications, predictive biomarkers, and new therapeutic targets. Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of all AML cases, with the internal tandem duplication (ITD) representing the most common type of FLT3 mutation (FLT3-ITD; approximately 25% of all AML cases). FLT3-ITD is a common driver mutation that presents with a high leukemic burden and confers a poor prognosis in patients with AML. The prognostic value of a FLT3 mutation in the tyrosine kinase domain (FLT3-TKD), which has a lower incidence in AML (approximately 7–10% of all cases), is uncertain. Accumulating evidence demonstrates that FLT3 mutational status evolves throughout the disease continuum. This so-called clonal evolution, together with the identification of FLT3-ITD as a negative prognostic marker, serves to highlight the importance of FLT3-ITD testing at diagnosis and again at relapse. Earlier identification of FLT3 mutations will help provide a better understanding of the patient’s disease and enable targeted treatment that may help patients achieve longer and more durable remissions. First-generation FLT3 inhibitors developed for clinical use are broad-spectrum, multikinase inhibitors; however, next-generation FLT3 inhibitors are more specific, more potent, and have fewer toxicities associated with off-target effects. Primary and secondary acquired resistance to FLT3 inhibitors remains a challenge and provides a rationale for combining FLT3 inhibitors with other therapies, both conventional and investigational. This review focuses on the pathological and prognostic role of FLT3 mutations in AML, clinical classification of the disease, recent progress with next-generation FLT3 inhibitors, and mechanisms of resistance to FLT3 inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biology, risk stratification, and therapy of pediatric acute leukemias: an update.

              We review recent advances in the biologic understanding and treatment of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), identify therapeutically challenging subgroups, and suggest future directions of research. A review of English literature on childhood acute leukemias from the past 5 years was performed. Contemporary treatments have resulted in 5-year event-free survival rates of approximately 80% for childhood ALL and almost 60% for pediatric AML. The advent of high-resolution genome-wide analyses has provided new insights into leukemogenesis and identified many novel subtypes of leukemia. Virtually all ALL and the vast majority of AML cases can be classified according to specific genetic abnormalities. Cooperative mutations involved in cell differentiation, cell cycle regulation, tumor suppression, drug responsiveness, and apoptosis have also been identified in many cases. The development of new formulations of existing drugs, molecularly targeted therapy, and immunotherapies promises to further advance the cure rates and improve quality of life of patients. The application of new high-throughput sequencing techniques to define the complete DNA sequence of leukemia and host normal cells and the development of new agents targeted to leukemogenic pathways promise to further improve outcome in the coming decade.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Pediatrics
                Ovid Technologies (Wolters Kluwer Health)
                1040-8703
                1531-698X
                2020
                February 2020
                : 32
                : 1
                : 57-66
                Article
                10.1097/MOP.0000000000000855
                cf73e27b-3c4c-4259-8a2e-2335450e638a
                © 2020
                History

                Comments

                Comment on this article