7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional injectable hydrogel with spatiotemporal sequential release for recruitment of endogenous stem cells and in situ cartilage regeneration.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Articular cartilage is refractory to self-healing due to the absence of vascular, nervous, and lymphatic systems, and its repair remains a clinical challenge. Tissue regeneration through in situ recruitment of stem cells via cell-free scaffolds is a promising alternative strategy. Herein, a kind of functional injectable hydrogel system (Col-Apt@KGN MPs), which is a collagen-based and microsphere-embedded cell-free scaffold, was designed to achieve spatiotemporal regulation of endogenous mesenchymal stem cells (MSCs) recruitment and their chondrogenic differentiation by respective release of aptamer 19S (Apt19S) and kartogenin (KGN). In vitro results confirmed that the Col-Apt@KGN MPs hydrogel had sequential release characteristics. Apt19S was rapidly released from the hydrogel within 6 days, while KGN was slowly released for 33 days via the degradation of poly(lactic-co-glycolic acid) (PLGA) microspheres. When cultured with MSCs, the Col-Apt@KGN MPs hydrogel supported the adhesion, proliferation, and chondrogenic differentiation of MSCs. In vivo results indicated that the Col-Apt@KGN MPs hydrogel effectively promoted the recruitment of endogenous MSCs in a rabbit full-thickness cartilage defect model; furthermore, the Col-Apt@KGN MPs hydrogel enhanced the secretion of cartilage specific extracellular matrix and achieved the reconstruction of subchondral bone. This study demonstrates that the Col-Apt@KGN MPs hydrogel possesses great potential in recruitment of endogenous stem cells and cartilage tissue regeneration.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis

          Osteoarthritis is a leading cause of disability and source of societal cost in older adults. With an ageing and increasingly obese population, this syndrome is becoming even more prevalent than in previous decades. In recent years, we have gained important insights into the cause and pathogenesis of pain in osteoarthritis. The diagnosis of osteoarthritis is clinically based despite the widespread overuse of imaging methods. Management should be tailored to the presenting individual and focus on core treatments, including self-management and education, exercise, and weight loss as relevant. Surgery should be reserved for those that have not responded appropriately to less invasive methods. Prevention and disease modification are areas being targeted by various research endeavours, which have indicated great potential thus far. This narrative Seminar provides an update on the pathogenesis, diagnosis, management, and future research on osteoarthritis for a clinical audience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

            Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A stem cell-based approach to cartilage repair.

              Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ), and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis.
                Bookmark

                Author and article information

                Journal
                J Mater Chem B
                Journal of materials chemistry. B
                Royal Society of Chemistry (RSC)
                2050-7518
                2050-750X
                May 10 2023
                : 11
                : 18
                Affiliations
                [1 ] National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China. likunguo@scu.edu.cn.
                [2 ] School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
                Article
                10.1039/d3tb00105a
                37078118
                61f9048b-7432-4b78-bea0-620c26ce9fc9
                History

                Comments

                Comment on this article