3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bioactive surface modifications through thermally sprayed hydroxyapatite composite coatings: a review of selective reinforcements

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydroxyapatite (HA) composite coatings with different reinforcements facilitated enhanced mechanical, tribological, and biological properties.

          Abstract

          Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications owing to its close resemblance to the bone properties; however, it is brittle and has low strength. Surface modification techniques have been able to allay such mineral issues by depositing on substrate. These methods, being economical, impart mechanical strength without compromising biocompatibility. In this review article, the discussion is confined to plasma spray (high temperature) and other low temperature surface modification techniques: high-velocity oxy-fuel (HVOF) and cold spray. The processing temperature seems to significantly affect the performance of implants deposited with HA. Monolithic HA may not add enough strength to the bioimplants. Hence, this review discusses selective reinforcements to HA and their roles in enhancing the properties. Herein, a variety of selective reinforcements are discussed, such as carbon allotropes: graphene, carbon nanotubes, and nano diamond; metallic materials: Ag, Sr, Mg, and Ti; ceramic materials: Al 2O 3, SiO 2, ZrO 2, and TiO 2; multi-materials: Al 2O 3-CNT/HA, Al 2O 3–TiO 2/HA and others; and functionally graded composites: HA, 20 and 50 wt% Ti–6Al–4V/HA layered coating. Most of these reinforcements could not trade-off between biocompatibility and strength. The detailed in vitro and in vivo studies are still lacking. The literature on the relative effectiveness of these reinforcements is scanty, while the interface between HA coating and reinforcements is seldom explored. This review presents the suitability of thermal spray techniques based on the microstructure, mechanical, and biological properties. Therefore, it is envisaged that the present review can intrigue future researchers to understand the scope of surface coatings in achieving the better performance of implants at clinical trials.

          Related collections

          Most cited references404

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study

          Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The antimicrobial activity of nanoparticles: present situation and prospects for the future

            Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ti based biomaterials, the ultimate choice for orthopaedic implants – A review

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                May 17 2022
                2022
                : 10
                : 10
                : 2484-2523
                Affiliations
                [1 ]Department of Mechanical Engineering, National Institute of Technology, Surathkal, 575025, India
                [2 ]Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
                Article
                10.1039/D2BM00039C
                3fcf91e8-cd49-478e-9c17-0a51a30e7519
                © 2022

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article