1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Amorphous Ni(Ⅲ)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water

      , , , , , , ,
      Applied Catalysis B: Environmental
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          A review on fundamentals for designing oxygen evolution electrocatalysts

          The fundamentals related to the oxygen evolution reaction and catalyst design are summarized and discussed. Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Earth-Abundant Heterogeneous Water Oxidation Catalysts

            Water oxidation is a key chemical transformation for the conversion of solar energy into chemical fuels. Our review focuses on recent work on robust earth-abundant heterogeneous catalysts for the oxygen-evolving reaction (OER). We point out that improvements in the performance of OER catalysts will depend critically on the success of work aimed at understanding reaction barriers based on atomic-level mechanisms. We highlight the challenge of obtaining acid-stable OER catalysts, with proposals for elements that could be employed to reach this goal. We suggest that future advances in solar fuels science will be accelerated by the development of new methods for materials synthesis and characterization, along with in-depth investigations of redox mechanisms at catalytic surfaces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions

              Abstract Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state‐of‐the‐art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active‐sites with improved electrochemical efficiencies in future.
                Bookmark

                Author and article information

                Journal
                Applied Catalysis B: Environmental
                Applied Catalysis B: Environmental
                Elsevier BV
                09263373
                September 2022
                September 2022
                : 312
                : 121389
                Article
                10.1016/j.apcatb.2022.121389
                b9f2cbed-5379-498d-bbd2-d3eea633f53a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article