1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecularly Targeted Therapies for Triple Negative Breast Cancer: History, Advances, and Future Directions.

      1 , 1 , 2
      Clinical breast cancer
      Elsevier BV
      BRCA, PARPi, PI3K, TNBC, Targeted Therapy

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triple negative breast cancer (TNBC) remains the subtype with poorest prognosis. Despite the subtype's heterogeneity, there is still a paucity in effective targeted therapeutics that offer both good efficacy and tolerability, and chemotherapy remains the backbone of modern TNBC therapy. In the past few years, immunotherapy as well as novel therapeutic modalities like antibody-drug conjugates (ADCs) have shown clinical benefit and have been FDA approved in various clinical stages of unselected TNBC. However, there has not been similar advancement in molecularly targeted therapies, especially when compared to advancements seen in hormone receptor (HR)-positive or HER2-positive breast cancer. PARP inhibitors have been approved for BRCA-mutated TNBC, but responses are short-lived, and resistance remains a barrier for current treatment. PI3K pathway inhibitors approved in HR+ breast cancer has not worked for TNBC and continue to have significant dose-limiting adverse effects. EGFR inhibition has been thoroughly explored in TNBC, but all trials so far have shown minimal efficacy. Nevertheless, despite these setbacks, current research in targeted therapy for TNBC holds great promise in overcoming the barriers of the past and developing novel therapeutic approaches for the future. In this review, we describe molecular targets both identified and validated in the treatment of TNBC, discuss the historical efforts towards development of targeted agents and current areas of improvement, and address promising advances that have the potential to improve outcomes in this heterogenous and aggressive breast cancer subtype. Immunotherapy, ADCs, and AR targeting will be discussed in separate reviews of this edition.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.

          BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies.

            Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem-like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted "driver" signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pembrolizumab for Early Triple-Negative Breast Cancer

              Previous trials showed promising antitumor activity and an acceptable safety profile associated with pembrolizumab in patients with early triple-negative breast cancer. Whether the addition of pembrolizumab to neoadjuvant chemotherapy would significantly increase the percentage of patients with early triple-negative breast cancer who have a pathological complete response (defined as no invasive cancer in the breast and negative nodes) at definitive surgery is unclear.
                Bookmark

                Author and article information

                Journal
                Clin Breast Cancer
                Clinical breast cancer
                Elsevier BV
                1938-0666
                1526-8209
                Dec 2023
                : 23
                : 8
                Affiliations
                [1 ] Memorial Sloan Kettering Cancer Center, New York, NY.
                [2 ] Memorial Sloan Kettering Cancer Center, New York, NY. Electronic address: jhaverik@mskcc.org.
                Article
                S1526-8209(23)00133-7
                10.1016/j.clbc.2023.05.012
                37336650
                092127a4-bd0d-4ce3-ba77-b08bdfeeb41f
                History

                BRCA,Targeted Therapy,TNBC,PI3K,PARPi
                BRCA, Targeted Therapy, TNBC, PI3K, PARPi

                Comments

                Comment on this article