16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Diastereo- and Enantioselective Reactions of Bis(pinacolato)diboron, 1,3-Enynes, and Aldehydes Catalyzed by an Easily Accessible Bisphosphine–Cu Complex

      rapid-communication

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catalytic enantioselective multicomponent processes involving bis(pinacolato)diboron [B 2(pin) 2], 1,3-enynes, and aldehydes are disclosed; the resulting compounds contain a primary C–B(pin) bond, as well as alkyne- and hydroxyl-substituted tertiary carbon stereogenic centers. A critical feature is the initial enantioselective Cu–B(pin) addition to an alkyne-substituted terminal alkene. This and other key mechanistic issues have been investigated by DFT calculations. Reactions are promoted by the Cu complex of a commercially available enantiomerically pure bis-phosphine and are complete in 8 h at ambient temperature; products are generated in 66–94% yield (after oxidation or catalytic cross-coupling), 90:10 to >98:2 diastereomeric ratio, and 85:15–99:1 enantiomeric ratio. Aryl-, heteroaryl-, alkenyl-, and alkyl-substituted aldehydes and enynes can be used. Utility is illustrated through catalytic alkylation and arylation of the organoboron products as well as applications to synthesis of fragments of tylonolide and mycinolide IV.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Versatile Photocatalytic Systems for H2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst

          The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2 R′N2 R″)2]2+ core (P2 R′N2 R″ = bis(1,5-R′-diphospha-3,7-R″-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 (“on particle” system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 (“through particle” system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h–1 with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Asymmetric synthesis from terminal alkenes by diboration/cross-coupling cascades

            Amongst prospective starting materials for organic synthesis, terminal (monosubstituted) alkenes are ideal. In the form of α-olefins, they are manufactured on enormous scale and they are the core product features from many organic chemical reactions. While their latent reactivity can easily enable hydrocarbon chain extension, alkenes also have the attractive feature of being stable in the presence of many acids, bases, oxidants and reductants. In spite of these impressive attributes, relatively few catalytic enantioselective transformations have been developed that transform aliphatic α-olefins in >90% ee and, with the exception of site-controlled isotactic polymerization of α-olefins, 1 none of these processes result in chain-extending C-C bond formation to the terminal carbon. 2, 3, 4, 5, 6 Herein, we describe a strategy that directly addresses this gap in synthetic methodology and present a single-flask catalytic enantioselective conversion of terminal alkenes into a range of chiral products. These reactions are enabled by an unusual neighboring group participation effect that accelerates Pd-catalyzed cross-coupling of 1,2-bis(boronates) relative to nonfunctionalized alkyl boronate analogs. In tandem with enantioselective diboration, this reactivity feature connects abundant alkene starting materials to a diverse array of chiral products. Importantly with respect to synthesis utility, the tandem diboration/cross-coupling reaction (DCC reaction) generally provides products in high yield and high selectivity (>95:5 enantiomer ratio), employs low loadings (1–2 mol %) of commercially available catalysts and reagents, it offers an expansive substrate scope, and can address a broad range of alcohol and amine synthesis targets, many of which cannot be easily addressed with current technology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regioselective and stereospecific copper-catalyzed aminoboration of styrenes with bis(pinacolato)diboron and O-benzoyl-N,N-dialkylhydroxylamines.

              A Cu-catalyzed regioselective and stereospecific aminoboration of styrenes with bis(pinacolato)diboron and O-benzoyl-N,N-dialkylhydroxylamines that delivers the corresponding β-aminoalkylboranes in good yields has been developed. The Cu catalysis enables introduction of both amine and boron moieties to C-C double bonds simultaneously in a syn fashion. Moreover, the use of a chiral biphosphine ligand, (S,S)-Me-Duphos, provides a catalytic enantioselective route to optically active β-aminoalkylboranes.
                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J. Am. Chem. Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                04 August 2015
                04 August 2014
                13 August 2014
                : 136
                : 32
                : 11304-11307
                Affiliations
                [1]Department of Chemistry, Merkert Chemistry Center, Boston College , Chestnut Hill, Massachusetts 02467, United States
                Author notes
                Article
                10.1021/ja5071202
                4140502
                25089917
                4903f2d5-35b4-4c92-97e7-b9adba463793
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 14 July 2014
                Funding
                National Institutes of Health, United States
                Categories
                Communication
                Custom metadata
                ja5071202
                ja-2014-071202

                Chemistry
                Chemistry

                Comments

                Comment on this article