31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      sp2–sp3diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.

          Methods that functionalize C-H bonds can lead to new approaches for the synthesis of organic molecules, but to achieve this goal, researchers must develop site-selective reactions that override the inherent reactivity of the substrates. Moreover, reactions are needed that occur with high turnover numbers and with high tolerance for functional groups if the C-H bond functionalization is to be applied to the synthesis of medicines or materials. This Account describes the discovery and development of the C-H bond functionalization of aliphatic and aromatic C-H bonds with borane and silane reagents. The fundamental principles that govern the reactivity of intermediates containing metal-boron bonds are emphasized and how an understanding of the effects of the ligands on this reactivity led us to broaden the scope of main group reagents that react under mild conditions to generate synthetically useful organosilanes is described. Complexes containing a covalent bond between a transition metal and a three-coordinate boron atom (boryl complexes) are unusually reactive toward the cleavage of typically unreactive C-H bonds. Moreover, this C-H bond cleavage leads to the formation of free, functionalized product by rapid coupling of the hydrocarbyl and boryl ligands. The initial observation of the borylation of arenes and alkanes in stoichiometric processes led to catalytic systems for the borylation of arenes and alkanes with diboron compounds (diborane(4) reagents) and boranes. In particular, complexes based on the Cp*Rh (in which Cp is the cyclopentadienyl anion) fragment catalyze the borylation of alkanes, arenes, amines, ethers, ketals, and haloalkanes. Although less reactive toward alkyl C-H bonds than the Cp*Rh systems, catalysts generated from the combination of bipyridines and iridium(I)-olefin complexes have proven to be the most reactive catalysts for the borylation of arenes. The reactions catalyzed by these complexes form arylboronates from arenes with site-selectivity for C-H bond cleavage that depends on the steric accessibility of the C-H bonds. These complexes also catalyze the borylation of heteroarenes, and the selectivity for these substrates is more dependent on electronic effects than the borylation of arenes. The products from the borylation of arenes and heteroarenes are suitable for a wide range of subsequent conversions to phenols, arylamines, aryl ethers, aryl nitriles, aryl halides, arylboronic acids, and aryl trifluoroborates. Studies of the electronic properties of the ancillary ligand on the rate of the reaction show that the flat structure and the strong electron-donating property of the bipyridine ligands, along with the strong electron-donating property of the boryl group and the presence of a p-orbital on the metal-bound atom, lead to the increased reactivity of the iridium catalysts. Based on this hypothesis, we studied catalysts containing substituted phenanthroline ligands for a series of additional transformations, including the silylation of C-H bonds. A sequence involving the silylation of benzylic alcohols, followed by the dehydrogenative silylation of aromatic C-H bonds, leads to an overall directed silylation of the C-H bond ortho to hydroxyl functionality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond

            Homoatomic triple bonds between main-group elements have been restricted to alkynes, dinitrogen, and a handful of reactive compounds featuring trans-bent heavier elements of groups 13 and 14. Previous attempts to prepare a compound with a boron-boron triple bond that is stable at ambient temperature have been unsuccessful, despite numerous computational studies predicting their viability. We found that reduction of a bis(N-heterocyclic carbene)-stabilized tetrabromodiborane with either two or four equivalents of sodium naphthalenide, a one-electron reducing agent, yields isolable diborene and diboryne compounds. Crystallographic and spectroscopic characterization confirm that the latter is a halide-free linear system containing a boron-boron triple bond.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines.

              Amines and boranes are the archetypical Lewis bases and acids, respectively. The former can readily undergo one-electron oxidation to give radical cations, whereas the latter are easily reduced to afford radical anions. Here, we report the synthesis of a neutral tricoordinate boron derivative, which acts as a Lewis base and undergoes one-electron oxidation into the corresponding radical cation. These compounds can be regarded as the parent borylene (H-B:) and borinylium (H-B(+.)), respectively, stabilized by two cyclic (alkyl)(amino)carbenes. Ab initio calculations show that the highest occupied molecular orbital of the borane as well as the singly occupied molecular orbital of the radical cation are essentially a pair and a single electron, respectively, in the p(π) orbital of boron.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chem. Commun.
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2015
                2015
                : 51
                : 47
                : 9594-9607
                Article
                10.1039/C5CC02316E
                fd6fed7b-fec4-46bc-bf51-abb1c5e08787
                © 2015
                History

                Comments

                Comment on this article