12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references267

          • Record: found
          • Abstract: found
          • Article: not found

          Plant–microbiome interactions: from community assembly to plant health

          Healthy plants host diverse but taxonomically structured communities of microorganisms, the plant microbiota, that colonize every accessible plant tissue. Plant-associated microbiomes confer fitness advantages to the plant host, including growth promotion, nutrient uptake, stress tolerance and resistance to pathogens. In this Review, we explore how plant microbiome research has unravelled the complex network of genetic, biochemical, physical and metabolic interactions among the plant, the associated microbial communities and the environment. We also discuss how those interactions shape the assembly of plant-associated microbiomes and modulate their beneficial traits, such as nutrient acquisition and plant health, in addition to highlighting knowledge gaps and future directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global burden of pathogens and pests on major food crops

            Crop pathogens and pests reduce the yield and quality of agricultural production. They cause substantial economic losses and reduce food security at household, national and global levels. Quantitative, standardized information on crop losses is difficult to compile and compare across crops, agroecosystems and regions. Here, we report on an expert-based assessment of crop health, and provide numerical estimates of yield losses on an individual pathogen and pest basis for five major crops globally and in food security hotspots. Our results document losses associated with 137 pathogens and pests associated with wheat, rice, maize, potato and soybean worldwide. Our yield loss (range) estimates at a global level and per hotspot for wheat (21.5% (10.1-28.1%)), rice (30.0% (24.6-40.9%)), maize (22.5% (19.5-41.1%)), potato (17.2% (8.1-21.0%)) and soybean (21.4% (11.0-32.4%)) suggest that the highest losses are associated with food-deficit regions with fast-growing populations, and frequently with emerging or re-emerging pests and diseases. Our assessment highlights differences in impacts among crop pathogens and pests and among food security hotspots. This analysis contributes critical information to prioritize crop health management to improve the sustainability of agroecosystems in delivering services to societies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soil bacterial and fungal communities across a pH gradient in an arable soil.

              Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.
                Bookmark

                Author and article information

                Journal
                Microbiological Research
                Microbiological Research
                Elsevier BV
                09445013
                December 2022
                December 2022
                : 265
                : 127199
                Article
                10.1016/j.micres.2022.127199
                23b255b9-951d-44da-9c44-4b335439e9e3
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article