65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The global burden of pathogens and pests on major food crops

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crop pathogens and pests reduce the yield and quality of agricultural production. They cause substantial economic losses and reduce food security at household, national and global levels. Quantitative, standardized information on crop losses is difficult to compile and compare across crops, agroecosystems and regions. Here, we report on an expert-based assessment of crop health, and provide numerical estimates of yield losses on an individual pathogen and pest basis for five major crops globally and in food security hotspots. Our results document losses associated with 137 pathogens and pests associated with wheat, rice, maize, potato and soybean worldwide. Our yield loss (range) estimates at a global level and per hotspot for wheat (21.5% (10.1-28.1%)), rice (30.0% (24.6-40.9%)), maize (22.5% (19.5-41.1%)), potato (17.2% (8.1-21.0%)) and soybean (21.4% (11.0-32.4%)) suggest that the highest losses are associated with food-deficit regions with fast-growing populations, and frequently with emerging or re-emerging pests and diseases. Our assessment highlights differences in impacts among crop pathogens and pests and among food security hotspots. This analysis contributes critical information to prioritize crop health management to improve the sustainability of agroecosystems in delivering services to societies.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogen population genetics, evolutionary potential, and durable resistance.

            We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Agricultural intensification and ecosystem properties.

              Expansion and intensification of cultivation are among the predominant global changes of this century. Intensification of agriculture by use of high-yielding crop varieties, fertilization,irrigation, and pesticides has contributed substantially to the tremendous increases in food production over the past 50 years. Land conversion and intensification,however, also alter the biotic interactions and patterns of resource availability in ecosystems and can have serious local, regional, and global environmental consequences.The use of ecologically based management strategies can increase the sustainability of agricultural production while reducing off-site consequences.
                Bookmark

                Author and article information

                Journal
                Nature Ecology & Evolution
                Nat Ecol Evol
                Springer Nature
                2397-334X
                February 4 2019
                Article
                10.1038/s41559-018-0793-y
                30718852
                c5ad72c0-49d3-4098-859a-eaf2af3ae1b9
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article