16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Defective Autophagy and Mitophagy in Aging and Alzheimer’s Disease

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging is the time-dependent process that all living organisms go through characterized by declining physiological function due to alterations in metabolic and molecular pathways. Many decades of research have been devoted to uncovering the cellular changes and progression of aging and have revealed that not all organisms with the same chronological age exhibit the same age-related declines in physiological function. In assessing biological age, factors such as epigenetic changes, telomere length, oxidative damage, and mitochondrial dysfunction in rescue mechanisms such as autophagy all play major roles. Recent studies have focused on autophagy dysfunction in aging, particularly on mitophagy due to its major role in energy generation and reactive oxidative species generation of mitochondria. Mitophagy has been implicated in playing a role in the pathogenesis of many age-related diseases, including Alzheimer’s disease (AD), Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The purpose of our article is to highlight the mechanisms of autophagy and mitophagy and how defects in these pathways contribute to the physiological markers of aging and AD. This article also discusses how mitochondrial dysfunction, abnormal mitochondrial dynamics, impaired biogenesis, and defective mitophagy are related to aging and AD progression. This article highlights recent studies of amyloid beta and phosphorylated tau in relation to autophagy and mitophagy in AD.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ageing as a risk factor for neurodegenerative disease

            Ageing is the primary risk factor for most neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson disease (PD). One in ten individuals aged ≥65 years has AD and its prevalence continues to increase with increasing age. Few or no effective treatments are available for ageing-related neurodegenerative diseases, which tend to progress in an irreversible manner and are associated with large socioeconomic and personal costs. This Review discusses the pathogenesis of AD, PD and other neurodegenerative diseases, and describes their associations with the nine biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion and altered intercellular communication. The central biological mechanisms of ageing and their potential as targets of novel therapies for neurodegenerative diseases are also discussed, with potential therapies including NAD+ precursors, mitophagy inducers and inhibitors of cellular senescence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy: cellular and molecular mechanisms.

              Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up-to-date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                08 January 2021
                2020
                : 14
                : 612757
                Affiliations
                [1] 1Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, TX, United States
                [2] 2Neuroscience and Pharmacology, Texas Tech University Health Sciences Center , Lubbock, TX, United States
                [3] 3Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center , Lubbock, TX, United States
                [4] 4Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center , Lubbock, TX, United States
                [5] 5Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center , Lubbock, TX, United States
                Author notes

                Edited by: Heather M. Wilkins, University of Kansas Medical Center Research Institute, United States

                Reviewed by: Russell H. Swerdlow, University of Kansas, United States; Konstantinos Palikaras, University of Copenhagen, Denmark; Levi Wood, Georgia Institute of Technology, United States

                *Correspondence: P. Hemachandra Reddy, hemachandra.reddy@ 123456ttuhsc.edu

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.612757
                7820371
                cffc8b56-61a0-4d62-9629-bb1c0bcfef26
                Copyright © 2021 Tran and Reddy.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 September 2020
                : 17 November 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 121, Pages: 18, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Neuroscience
                Review

                Neurosciences
                alzheimer’s disease,mitochondria reactive oxygen species,mitophagy,autophagy,aging
                Neurosciences
                alzheimer’s disease, mitochondria reactive oxygen species, mitophagy, autophagy, aging

                Comments

                Comment on this article