7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker co-localization, gene silencing and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by clathrin-mediated endocytosis in BICs and suggests a role for M. oryzae effectors in co-opting plant endocytosis.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis

          For the past twenty five years the NIH family of imaging software, NIH Image and ImageJ have been pioneers as open tools for scientific image analysis. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant immunity: towards an integrated view of plant-pathogen interactions.

            Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mechanisms of clathrin-mediated endocytosis

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Plant Cell
                Oxford University Press (OUP)
                1040-4651
                1532-298X
                March 28 2023
                March 28 2023
                Article
                10.1093/plcell/koad094
                c0dd9bc0-35f0-47ba-b855-708b40bf6b20
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article