12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of an alternative, rec12 (spo11)-independent pathway of fission yeast meiotic recombination in the absence of a DNA flap endonuclease.

      Genomics
      Chromosome Segregation, genetics, Crosses, Genetic, DNA, DNA, Fungal, chemistry, Endodeoxyribonucleases, Flow Cytometry, Genetic Markers, Meiosis, physiology, Models, Genetic, Mutation, Recombination, Genetic, Schizosaccharomyces, Schizosaccharomyces pombe Proteins

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Delta mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Delta rec12Delta strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis.

          A multisubunit complex, called cohesin, containing Smc1p, Smc3p, Scc1p, and Scc3p, is required for sister chromatid cohesion in mitotic cells. We show here that Smc3p and a meiotic version of Scc1p called Rec8p are required for cohesion between sister chromatids, for formation of axial elements, for reciprocal recombination, and for preventing hyperresection of double-strand breaks during meiosis. Both Rec8p and Smc3p colocalize with chromosome cores independently of synapsis during prophase I and largely disappear from chromosome arms after pachytene but persist in the neighborhood of centromeres until the onset of anaphase II. The eukaryotic cell's cohesion apparatus is required both for the repair of recombinogenic lesions and for chromosome segregation and therefore appears to lie at the heart of the meiotic process.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            [56] Molecular genetic analysis of fission yeast Schizosaccharomyces pombe

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cohesin Rec8 is required for reductional chromosome segregation at meiosis.

              When cells exit from mitotic cell division, their sister chromatids lose cohesion and separate to opposite poles of the dividing cell, resulting in equational chromosome segregation. In contrast, the reductional segregation of the first stage of meiotic cell division (meiosis I) requires that sister chromatids remain associated through their centromeres and move together to the same pole. Centromeric cohesion is lost as cells exit from meiosis II and sister chromatids can then separate. The fission yeast cohesin protein Rec8 is specific to and required for meiosis. Here we show that Rec8 appears in the centromeres and adjacent chromosome arms during the pre-meiotic S phase. Centromeric Rec8 persists throughout meiosis I and disappears at anaphase of meiosis II. When the rec8 gene is deleted, sister chromatids separate at meiosis I, resulting in equational rather than reductional chromosome segregation. We propose that the persistence of Rec8 at centromeres during meiosis I maintains sister-chromatid cohesion, and that its presence in the centromere-adjacent regions orients the kinetochores so that sister chromatids move to the same pole. This results in the reductional pattern of chromosome segregation necessary to reduce a diploid zygote to haploid gametes.
                Bookmark

                Author and article information

                Comments

                Comment on this article