2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Parkinson disease psychosis: from phenomenology to neurobiological mechanisms

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: not found

          Control of goal-directed and stimulus-driven attention in the brain.

          We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The human brain is intrinsically organized into dynamic, anticorrelated functional networks.

            During performance of attention-demanding cognitive tasks, certain regions of the brain routinely increase activity, whereas others routinely decrease activity. In this study, we investigate the extent to which this task-related dichotomy is represented intrinsically in the resting human brain through examination of spontaneous fluctuations in the functional MRI blood oxygen level-dependent signal. We identify two diametrically opposed, widely distributed brain networks on the basis of both spontaneous correlations within each network and anticorrelations between networks. One network consists of regions routinely exhibiting task-related activations and the other of regions routinely exhibiting task-related deactivations. This intrinsic organization, featuring the presence of anticorrelated networks in the absence of overt task performance, provides a critical context in which to understand brain function. We suggest that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The brain’s default network: updated anatomy, physiology and evolving insights

              Discoveries over the past two decades demonstrate that regions distributed throughout the association cortex, often called the default network, are suppressed during tasks that demand external attention and are active during remembering, envisioning the future and making social inferences. This Review describes progress in understanding the organization and function of networks embedded within these association regions. Detailed high-resolution analyses of single individuals suggest that the default network is not a single network, as historically described, but instead comprises multiple interwoven networks. The multiple networks share a common organizational motif (also evident in marmoset and macaque anatomical circuits) that might support a general class of processing function dependent on internally constructed rather than externally constrained representations, with each separate interwoven network specialized for a distinct processing domain. Direct neuronal recordings in humans and monkeys reveal evidence for competitive relationships between the internally and externally oriented networks. Findings from rodent studies suggest that the thalamus might be essential to controlling which networks are engaged through specialized thalamic reticular neurons, including antagonistic subpopulations. These association networks (and presumably thalamocortical circuits) are expanded in humans and might be particularly vulnerable to dysregulation implicated in mental illness.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Neurology
                Nat Rev Neurol
                Springer Science and Business Media LLC
                1759-4758
                1759-4766
                March 2024
                January 15 2024
                March 2024
                : 20
                : 3
                : 135-150
                Article
                10.1038/s41582-023-00918-8
                cb512ef3-4d4a-4a3f-ae5e-0fbff92510d7
                © 2024

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article