4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterizing Magnetized Plasmas with Dynamic Mode Decomposition

      Preprint
      , , ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate and efficient plasma models are essential to understand and control experimental devices. Existing magnetohydrodynamic or kinetic models are nonlinear, computationally intensive, and can be difficult to interpret, while often only approximating the true dynamics. In this work, data-driven techniques recently developed in the field of fluid dynamics are leveraged to develop interpretable reduced-order models of plasmas that strike a balance between accuracy and efficiency. In particular, dynamic mode decomposition (DMD) is used to extract spatio-temporal magnetic coherent structures from the experimental and simulation datasets of the HIT-SI experiment. Three-dimensional magnetic surface probes from the HIT-SI experiment are analyzed, along with companion simulations with synthetic internal magnetic probes. A number of leading variants of the DMD algorithm are compared, including the sparsity-promoting and optimized DMD. Optimized DMD results in the highest overall prediction accuracy, while sparsity-promoting DMD yields physically interpretable models that avoid overfitting. These DMD algorithms uncover several coherent magnetic modes that provide new physical insights into the inner plasma structure. These modes were subsequently used to discover a previously unobserved three-dimensional structure in the simulation, rotating at the second injector harmonic. Finally, using data from probes at experimentally accessible locations, DMD identifies a resistive kink mode, a ubiquitous instability seen in magnetized plasmas.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Dynamic mode decomposition of numerical and experimental data

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spectral analysis of nonlinear flows

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Machine Learning for Fluid Mechanics

              The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from experiments, field measurements, and large-scale simulations at multiple spatiotemporal scales. Machine learning (ML) offers a wealth of techniques to extract information from data that can be translated into knowledge about the underlying fluid mechanics. Moreover, ML algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of ML for fluid mechanics. We outline fundamental ML methodologies and discuss their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experiments, and simulations. ML provides a powerful information-processing framework that can augment, and possibly even transform, current lines of fluid mechanics research and industrial applications.
                Bookmark

                Author and article information

                Journal
                15 November 2019
                Article
                1911.06938
                a11d66e5-d0f8-4913-ae73-71851c421149

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                physics.plasm-ph physics.comp-ph

                Plasma physics,Mathematical & Computational physics
                Plasma physics, Mathematical & Computational physics

                Comments

                Comment on this article