12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Osteochondritis Dissecans (OCD)-Derived Chondrocytes Display Increased Senescence, Oxidative Stress, Chaperone-Mediated Autophagy and, in Co-Culture with Adipose-Derived Stem Cells (ASCs), Enhanced Expression of MMP-13

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteochondritis dissecans (OCD) in equids, especially in sport horses, has become a growing issue as it contributes to the occurrence of lameness. Thus the aim of this study was to investigate the cytophysiological properties of OCD chondrocytes including expression of chondrogenic genes, apoptosis, mitochondria dynamics and autophagy. Horse chondrocytes were isolated from healthy (HE) and OCD cartilages. Properties of cells were evaluated using multiple assays e.g., polymerase chain reaction (PCR), immunofluorescence, Western blot. OCD chondrocytes were characterized by increased apoptosis and senescence. Expression of chondrogenic genes (vimentin, aggrecan) was decreased while mRNA levels of matrix metalloproteinase 13 significantly upregulated in comparison to HE cells. Moreover, OCD cells displayed increased mitochondrial fusion while fission events were diminished. Interestingly, chaperone mediated autophagy was triggered in those cells and it predominated over macroautophagy. Furthermore, co-culture of LPS-treated chondrocytes with adipose-derived stem cells (ASC) decreased p62/sequestosome 1 (SQSTM) and increases MMP-13 expression in OCD cells. Our results suggest that OCD affected horse chondrocytes are characterized by senescent phenotype due to endoplasmic reticulum stress and mitochondria dynamics deterioration. Expression of chondrogenic markers is decreased in those cells while expression of chaperone mediated autophagy (CMA)-related genes increased. Increased malfunctioning of cells leads to loss of their functionality and capacity to maintain tissue homeostasis.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis.

          Autophagy is a process for turnover of intracellular organelles and molecules that protects cells during stress responses. We undertook this study to evaluate the potential roles of Unc-51-like kinase 1 (ULK1), an inducer of autophagy, Beclin1, a regulator of autophagy, and microtubule-associated protein 1 light chain 3 (LC3), which executes autophagy, in the development of osteoarthritis (OA) and in cartilage cell death. Expression of ULK1, Beclin1, and LC3 was analyzed in normal and OA human articular cartilage and in knee joints of mice with aging-related and surgically induced OA, using immunohistochemistry and Western blotting. Poly(ADP-ribose) polymerase (PARP) p85 expression was used to determine the correlation between cell death and autophagy. ULK1, Beclin1, and LC3 were constitutively expressed in normal human articular cartilage. ULK1, Beclin1, and LC3 protein expression was reduced in OA chondrocytes and cartilage, but these 3 proteins were strongly expressed in the OA cell clusters. In mouse knee joints, loss of glycosaminoglycans (GAGs) was observed at ages 9 months and 12 months and in the surgical OA model, 8 weeks after knee destabilization. Expression of ULK1, Beclin1, and LC3 decreased together with GAG loss, while PARP p85 expression was increased. Autophagy may be a protective or homeostatic mechanism in normal cartilage. In contrast, human OA and aging-related and surgically induced OA in mice are associated with a reduction and loss of ULK1, Beclin1, and LC3 expression and a related increase in apoptosis. These results suggest that compromised autophagy represents a novel mechanism in the development of OA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MMP13 is a critical target gene during the progression of osteoarthritis

            Introduction Osteoarthritis (OA) is a degenerative joint disease affecting a large population of people. The mechanism of this highly prevalent disease is not fully understood. Currently there is no effective disease-modifying treatment for OA. The purpose of this study was two-fold: 1) to investigate the role of MMP13 in the development of OA; and 2) to evaluate the efficacy of the MMP13 inhibitor CL82198 as a pharmacologic treatment for preventing OA progression. Methods To investigate the role of the endogenous Mmp13 gene in OA development, tamoxifen was administered to two-week-old Col2CreER;Mmp13fx/fx (Mmp13Col2ER ) and Cre-negative control mice for five days. OA was induced by meniscal-ligamentous injury (MLI) when the mice were 10 weeks old and MLI or sham-operated joints were harvested 4, 8, 12, or 16 weeks after surgery. To evaluate the efficacy of CL82198, MLI surgery was performed on 10-week-old wild type mice. CL82198 or saline was administered to the mice daily beginning immediately after the surgery for up to 16 weeks. The joint tissues collected from both experiments were evaluated by cartilage grading, histology/histomorphometry, immunohistochemistry (IHC), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The ability of CL82198 to inhibit MMP13 activity in vitro was confirmed by ELISA. Results The OA progression was decelerated in Mmp13Col2ER mice 8, 12, and 16 weeks post-surgery. Cartilage grading by blinded observers confirmed decreased articular cartilage degeneration in Mmp13Col2ER mice at 8, 12 and 16 weeks compared to Cre-negative mice. Histomorphometric analysis demonstrated that Mmp13Col2ER mice had a higher articular cartilage area and thickness at 12 and 16 weeks post-surgery compared to the control mice. Results of IHC revealed greater type II collagen and proteoglycan expression in Mmp13Col2ER mice. Chondrocyte apoptosis, as determined by TUNEL staining, was higher in control mice compared to Mmp13Col2ER mice. CL82198 inhibited MMP13 activity in conditioned media from vehicle (> 85%) or bone morphogenetic protein 2 (BMP2)-treated (> 90%) primary murine sternal chondrocytes. Intraperitoneal injection of CL82198 decelerated MLI-induced OA progression, increased type II collagen and proteoglycan levels, and inhibited chondrocyte apoptosis compared to saline treatment as determined by OA grading, histology, histomorphometry, IHC, and TUNEL staining, respectively. Conclusions Mmp13 is critical for OA progression and pharmacologic inhibition of MMP13 is an effective strategy to decelerate articular cartilage loss in a murine model of injury-induced knee OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes.

              Replicative senescence of human diploid fibroblasts (HDFs) or melanocytes is caused by the exhaustion of their proliferative potential. Stress-induced premature senescence (SIPS) occurs after many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Cells in replicative senescence share common features with cells in SIPS: morphology, senescence-associated beta-galactosidase activity, cell cycle regulation, gene expression and telomere shortening. Telomere shortening is attributed to the accumulation of DNA single-strand breaks induced by oxidative damage. SIPS could be a mechanism of accumulation of senescent-like cells in vivo. Melanocytes exposed to sublethal doses of UVB undergo SIPS. Melanocytes from dark- and light- skinned populations display differences in their cell cycle regulation. Delayed SIPS occurs in melanocytes from light-skinned populations since a reduced association of p16(Ink-4a) with CDK4 and reduced phosphorylation of the retinoblastoma protein are observed. The role of reactive oxygen species in melanocyte SIPS is unclear. Both replicative senescence and SIPS are dependent on two major pathways. One is triggered by DNA damage, telomere damage and/or shortening and involves the activation of the p53 and p21(waf-1) proteins. The second pathway results in the accumulation of p16(Ink-4a) with the MAP kinase signalling pathway as possible intermediate. These data corroborate the thermodynamical theory of ageing, according to which the exposure of cells to sublethal stresses of various natures can trigger SIPS, with possible modulations of this process by bioenergetics.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                08 March 2019
                March 2019
                : 8
                : 3
                : 328
                Affiliations
                [1 ]International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland; kornicka.katarzyna@ 123456gmail.com (K.K.); zmiertka.marta@ 123456gmail.com (M.Z.)
                [2 ]Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
                [3 ]Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Gießen, Germany; mohamad.al-naem@ 123456vetmed.uni-giessen.de (M.A.N.); Michael.Roecken@ 123456vetmed.uni-giessen.de (M.R.)
                Author notes
                [* ]Correspondence: krzysztofmarycz@ 123456interia.pl ; Tel.: +71-320-5248
                Author information
                https://orcid.org/0000-0001-9216-8764
                https://orcid.org/0000-0003-3676-796X
                Article
                jcm-08-00328
                10.3390/jcm8030328
                6462951
                30857162
                b48b7bc4-9da5-436d-919d-2d4870ea8164
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 January 2019
                : 01 March 2019
                Categories
                Article

                chondrocytes,osteochondritis dissecans,horse,apoptosis,cartilage

                Comments

                Comment on this article