Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gene clustering by latent semantic indexing of MEDLINE abstracts.

      Bioinformatics
      Abstracting and Indexing as Topic, methods, Algorithms, Cluster Analysis, Documentation, Gene Expression Profiling, Information Storage and Retrieval, MEDLINE, Natural Language Processing, Pattern Recognition, Automated, Proteins, classification, metabolism, Semantics, Signal Transduction, physiology

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major challenge in the interpretation of high-throughput genomic data is understanding the functional associations between genes. Previously, several approaches have been described to extract gene relationships from various biological databases using term-matching methods. However, more flexible automated methods are needed to identify functional relationships (both explicit and implicit) between genes from the biomedical literature. In this study, we explored the utility of Latent Semantic Indexing (LSI), a vector space model for information retrieval, to automatically identify conceptual gene relationships from titles and abstracts in MEDLINE citations. We found that LSI identified gene-to-gene and keyword-to-gene relationships with high average precision. In addition, LSI identified implicit gene relationships based on word usage patterns in the gene abstract documents. Finally, we demonstrate here that pairwise distances derived from the vector angles of gene abstract documents can be effectively used to functionally group genes by hierarchical clustering. Our results provide proof-of-principle that LSI is a robust automated method to elucidate both known (explicit) and unknown (implicit) gene relationships from the biomedical literature. These features make LSI particularly useful for the analysis of novel associations discovered in genomic experiments. The 50-gene document collection used in this study can be interactively queried at http://shad.cs.utk.edu/sgo/sgo.html.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content190

          Cited by50