6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydroxyapatite (HA), the principal mineral of bone tissue, can be fabricated as an artificial calcium phosphate (CaP) ceramic and potentially used as bioceramic material for bone defect treatment. Nevertheless, the production method (including the applied sintering temperature) of synthetic hydroxyapatite directly affects its basic properties, such as its microstructure, mechanical parameters, bioabsorbability, and osteoconductivity, and in turn influences its biomedical potential as an implantable biomaterial. The wide application of HA in regenerative medicine makes it necessary to explain the validity of the selection of the sintering temperature. The main emphasis of this article is on the description and summarization of the key features of HA depending on the applied sintering temperature during the synthesis process. The review is mainly focused on the dependence between the HA sintering temperature and its microstructural features, mechanical properties, biodegradability/bioabsorbability, bioactivity, and biocompatibility.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in bone tissue engineering scaffolds.

          Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bone regeneration: current concepts and future directions

            Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bone grafts and biomaterials substitutes for bone defect repair: A review

              Bone grafts have been predominated used to treat bone defects, delayed union or non-union, and spinal fusion in orthopaedic clinically for a period of time, despite the emergency of synthetic bone graft substitutes. Nevertheless, the integration of allogeneic grafts and synthetic substitutes with host bone was found jeopardized in long-term follow-up studies. Hence, the enhancement of osteointegration of these grafts and substitutes with host bone is considerably important. To address this problem, addition of various growth factors, such as bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet rich plasma (PRP), into structural allografts and synthetic substitutes have been considered. Although clinical applications of these factors have exhibited good bone formation, their further application was limited due to high cost and potential adverse side effects. Alternatively, bioinorganic ions such as magnesium, strontium and zinc are considered as alternative of osteogenic biological factors. Hence, this paper aims to review the currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                International journal of molecular sciences
                MDPI AG
                1422-0067
                1422-0067
                Mar 07 2023
                : 24
                : 6
                Affiliations
                [1 ] Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
                Article
                ijms24065083
                10.3390/ijms24065083
                10049015
                36982158
                b87bd5f9-f627-402d-b5be-a7bda5f08dd4
                History

                cytotoxicity,mechanical properties,bioabsorbability,bioactivity,bioceramics,biocompatibility

                Comments

                Comment on this article