59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-κB activation

      , , , ,
      Nature Cell Biology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factor NF-kappaB is sequestered in the cytoplasm in a complex with IkappaB. Almost all NF-kappaB activation pathways converge on IkappaB kinase (IKK), which phosphorylates IkappaB resulting in Lys 48-linked polyubiquitination of IkappaB and its degradation. This allows migration of NF-kappaB to the nucleus where it regulates gene expression. IKK has two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma or NEMO. NEMO is essential for NF-kappaB activation, and NEMO dysfunction in humans is the cause of incontinentia pigmenti and hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID). The recruitment of IKK to occupied cytokine receptors, and its subsequent activation, are dependent on the attachment of Lys 63-linked polyubiquitin chains to signalling intermediates such as receptor-interacting protein (RIP). Here, we show that NEMO binds to Lys 63- but not Lys 48-linked polyubiquitin, and that single point mutations in NEMO that prevent binding to Lys 63-linked polyubiquitin also abrogates the binding of NEMO to RIP in tumour necrosis factor (TNF)-alpha-stimulated cells, the recruitment of IKK to TNF receptor (TNF-R) 1, and the activation of IKK and NF-kappaB. RIP is also destabilized in the absence of NEMO binding and undergoes proteasomal degradation in TNF-alpha-treated cells. These results provide a mechanism for NEMO's critical role in IKK activation, and a key to understanding the link between cytokine-receptor proximal signalling and IKK and NF-kappaB activation.

          Related collections

          Author and article information

          Journal
          Nature Cell Biology
          Nat Cell Biol
          Springer Nature
          1465-7392
          1476-4679
          March 19 2006
          March 19 2006
          : 8
          : 4
          : 398-406
          Article
          10.1038/ncb1384
          d59b21eb-4253-4ee2-b4e6-7f561155523e
          © 2006
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content1,289

          Cited by137