6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cropland Soil Salinization and Associated Hydrology: Trends, Processes and Examples

      Water
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While global food demand and world population are rapidly growing, land potential for cropping is steadily declining due to various soil degradation processes, a major one of them being soil salinization. Currently, approximately 20% of total cropland and 33% of irrigated agricultural land are salinized as a result of poor agricultural practices and it is expected that by 2050, half of the croplands worldwide will become salinized. Thus, there is a real need to better understand soil salinization processes and to develop agricultural practices that will enable production of the needed amount of food to feed humanity, while minimizing soil salinization and other degradation processes. The major sources of solutes in agricultural environments are: (i) the soil itself, and the parent geological material; (ii) shallow and salt rich groundwater; and (iii) salt rich irrigation water. The salinization of soil is a combination of transport of solutes towards the root zone to replenish evaporation and transpiration and limited washing of the soil by rain or irrigation. Therefore, most salinized soils are present in arid and semi-arid environments where precipitation is low and evaporation is high. In this manuscript, examples of soil salinization processes from croplands around the world will be presented and discussed to bring attention to this important topic, to present the latest scientific insights and to highlight the gaps that should be filled, from both scientific and practical perspectives.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

          Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Maximum rooting depth of vegetation types at the global scale

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              World salinization with emphasis on Australia.

              Salinization is the accumulation of water-soluble salts in the soil solum or regolith to a level that impacts on agricultural production, environmental health, and economic welfare. Salt-affected soils occur in more than 100 countries of the world with a variety of extents, nature, and properties. No climatic zone in the world is free from salinization, although the general perception is focused on arid and semi-arid regions. Salinization is a complex process involving the movement of salts and water in soils during seasonal cycles and interactions with groundwater. While rainfall, aeolian deposits, mineral weathering, and stored salts are the sources of salts, surface and groundwaters can redistribute the accumulated salts and may also provide additional sources. Sodium salts dominate in many saline soils of the world, but salts of other cations such as calcium, magnesium, and iron are also found in specific locations. Different types of salinization with a prevalence of sodium salts affect about 30% of the land area in Australia. While more attention is given to groundwater-associated salinity and irrigation salinity, which affects about 16% of the agricultural area, recent investigations suggest that 67% of the agricultural area has a potential for "transient salinity", a type of non-groundwater-associated salinity. Agricultural soils in Australia, being predominantly sodic, accumulate salts under seasonal fluctuations and have multiple subsoil constraints such as alkalinity, acidity, sodicity, and toxic ions. This paper examines soil processes that dictate the exact edaphic environment upon which root functions depend and can help in research on plant improvement.
                Bookmark

                Author and article information

                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                August 2018
                August 03 2018
                : 10
                : 8
                : 1030
                Article
                10.3390/w10081030
                7872c5ee-9260-473b-ad8b-038936507ae1
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article