87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Critical knowledge gaps and research priorities in global soil salinity

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references471

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of salinity tolerance.

          The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solutions for a cultivated planet.

            Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The future of seawater desalination: energy, technology, and the environment.

              In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.
                Bookmark

                Author and book information

                Book Chapter
                2021
                : 1-191
                10.1016/bs.agron.2021.03.001
                35768029
                5e1df8c3-8484-40a3-bbac-f8f6367e7f19
                History

                Comments

                Comment on this book