There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.
A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.
The arrangement of lipids and some proteins in the erythrocyte membrane has been discussed. The conclusions from this are listed here as a set of general guidelines for the structure of membranes of higher organisms: some of these rules may be wrong. But at this stage it seems useful to sharpen our thoughts in this way and thereby focus attention on various specific points. 1) The basis of a membrane is a lipid bilayer with (i) choline phospholipids and glycolipids in the external half and (ii) amino (and possibly some choline) phospholipids in the cytoplasmic half. There is effectively no lipid exchange across the bilayer (unless enzymatically catalyzed) (68). 2) Some proteins extend across the bilayer. Where this is so, they will in general have carbohydrate on their surface remote from the cytoplasm. This carbohydrate may prevent the protein diffusing out of the membrane into the cytoplasm; it acts as a lock on the protein. 3) Just as lipids do not flip-flop, proteins do not rotate across the membrane. Lateral motion or rotation of lipids and proteins in the plane of the bilayer may be expected. 4) Most membrane protein is associated with the inner, cytoplasmic, urface of the membrane. Proteins are not usually associated exclusively with the outer half of the lipid bilayer. 5) Membrane proteins are a special class of cytoplasmic proteins, not of secreted proteins.