0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: found
      Is Open Access
      Machine Learning and Knowledge Extraction : 7th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2023, Benevento, Italy, August 29 – September 1, 2023, Proceedings 

      Human-in-the-Loop Integration with Domain-Knowledge Graphs for Explainable Federated Deep Learning

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We explore the integration of domain knowledge graphs into Deep Learning for improved interpretability and explainability using Graph Neural Networks (GNNs). Specifically, a protein-protein interaction (PPI) network is masked over a deep neural network for classification, with patient-specific multi-modal genomic features enriched into the PPI graph’s nodes. Subnetworks that are relevant to the classification (referred to as “disease subnetworks”) are detected using explainable AI. Federated learning is enabled by dividing the knowledge graph into relevant subnetworks, constructing an ensemble classifier, and allowing domain experts to analyze and manipulate detected subnetworks using a developed user interface. Furthermore, the human-in-the-loop principle can be applied with the incorporation of experts, interacting through a sophisticated User Interface (UI) driven by Explainable Artificial Intelligence (xAI) methods, changing the datasets to create counterfactual explanations. The adapted datasets could influence the local model’s characteristics and thereby create a federated version that distils their diverse knowledge in a centralized scenario. This work demonstrates the feasibility of the presented strategies, which were originally envisaged in 2021 and most of it has now been materialized into actionable items. In this paper, we report on some lessons learned during this project.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets

          Abstract Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein–protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Comprehensive Survey on Graph Neural Networks

            Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial-temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interactive machine learning for health informatics: when do we need the human-in-the-loop?

              Machine learning (ML) is the fastest growing field in computer science, and health informatics is among the greatest challenges. The goal of ML is to develop algorithms which can learn and improve over time and can be used for predictions. Most ML researchers concentrate on automatic machine learning (aML), where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from big data with many training sets. However, in the health domain, sometimes we are confronted with a small number of data sets or rare events, where aML-approaches suffer of insufficient training samples. Here interactive machine learning (iML) may be of help, having its roots in reinforcement learning, preference learning, and active learning. The term iML is not yet well used, so we define it as “algorithms that can interact with agents and can optimize their learning behavior through these interactions, where the agents can also be human.” This “human-in-the-loop” can be beneficial in solving computationally hard problems, e.g., subspace clustering, protein folding, or k-anonymization of health data, where human expertise can help to reduce an exponential search space through heuristic selection of samples. Therefore, what would otherwise be an NP-hard problem, reduces greatly in complexity through the input and the assistance of a human agent involved in the learning phase.
                Bookmark

                Author and book information

                Contributors
                (View ORCID Profile)
                Book Chapter
                2023
                August 22 2023
                : 45-64
                10.1007/978-3-031-40837-3_4
                a4c57462-65fa-49dd-9eb5-7c1196e3322d
                History

                Comments

                Comment on this book