11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Comprehensive Survey on Graph Neural Networks

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d6706901e71">Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial-temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field. </p>

          Related collections

          Author and article information

          Contributors
          Journal
          IEEE Transactions on Neural Networks and Learning Systems
          IEEE Trans. Neural Netw. Learning Syst.
          Institute of Electrical and Electronics Engineers (IEEE)
          2162-237X
          2162-2388
          2020
          : 1-21
          Article
          10.1109/TNNLS.2020.2978386
          32217482
          2ca5beb9-e60b-49ad-b129-0c3db83bd2c3
          © 2020
          History

          Comments

          Comment on this article