1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Wood Degradation and Ligninolytic Fungi 

      Evolution of lignin decomposition systems in fungi

      edited-book
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The carbohydrate-active enzymes database (CAZy) in 2013

          The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lignin biosynthesis.

            The lignin biosynthetic pathway has been studied for more than a century but has undergone major revisions over the past decade. Significant progress has been made in cloning new genes by genetic and combined bioinformatics and biochemistry approaches. In vitro enzymatic assays and detailed analyses of mutants and transgenic plants altered in the expression of lignin biosynthesis genes have provided a solid basis for redrawing the monolignol biosynthetic pathway, and structural analyses have shown that plant cell walls can tolerate large variations in lignin content and structure. In some cases, the potential value for agriculture of transgenic plants with modified lignin structure has been demonstrated. This review presents a current picture of monolignol biosynthesis, polymerization, and lignin structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic distribution and evolution of mycorrhizas in land plants.

              A survey of 659 papers mostly published since 1987 was conducted to compile a checklist of mycorrhizal occurrence among 3,617 species (263 families) of land plants. A plant phylogeny was then used to map the mycorrhizal information to examine evolutionary patterns. Several findings from this survey enhance our understanding of the roles of mycorrhizas in the origin and subsequent diversification of land plants. First, 80 and 92% of surveyed land plant species and families are mycorrhizal. Second, arbuscular mycorrhiza (AM) is the predominant and ancestral type of mycorrhiza in land plants. Its occurrence in a vast majority of land plants and early-diverging lineages of liverworts suggests that the origin of AM probably coincided with the origin of land plants. Third, ectomycorrhiza (ECM) and its derived types independently evolved from AM many times through parallel evolution. Coevolution between plant and fungal partners in ECM and its derived types has probably contributed to diversification of both plant hosts and fungal symbionts. Fourth, mycoheterotrophy and loss of the mycorrhizal condition also evolved many times independently in land plants through parallel evolution.
                Bookmark

                Author and book information

                Book Chapter
                2021
                : 37-76
                10.1016/bs.abr.2021.05.003
                9e61f123-736e-4831-bd66-fb4c9e4d8c21
                History
                Funding

                Comments

                Comment on this book