3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Ligand Design in Metal Chemistry 

      Redox Non-innocent Ligands

      edited_book
      , ,
      John Wiley & Sons, Ltd

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: not found
          • Article: not found

          Splitting Water with Cobalt

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biologically inspired oxidation catalysis.

            The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. An additional challenge is to make such processes environmentally friendly, for example by using non-toxic reagents and energy-efficient catalytic methods. Excellent examples are naturally occurring iron- or copper-containing metalloenzymes, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired hydrocarbon oxidation catalysts hold great promise for wide-ranging synthetic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making oxygen with ruthenium complexes.

              Mastering the production of solar fuels by artificial photosynthesis would be a considerable feat, either by water splitting into hydrogen and oxygen or reduction of CO(2) to methanol or hydrocarbons: 2H(2)O + 4hnu --> O(2) + 2H(2); 2H(2)O + CO(2) + 8hnu --> 2O(2) + CH(4). It is notable that water oxidation to dioxygen is a key half-reaction in both. In principle, these solar fuel reactions can be coupled to light absorption in molecular assemblies, nanostructured arrays, or photoelectrochemical cells (PECs) by a modular approach. The modular approach uses light absorption, electron transfer in excited states, directed long range electron transfer and proton transfer, both driven by free energy gradients, combined with proton coupled electron transfer (PCET) and single electron activation of multielectron catalysis. Until recently, a lack of molecular catalysts, especially for water oxidation, has limited progress in this area. Analysis of water oxidation mechanism for the "blue" Ru dimer cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+) (bpy is 2,2'-bipyridine) has opened a new, general approach to single site catalysts both in solution and on electrode surfaces. As a catalyst, the blue dimer is limited by competitive side reactions involving anation, but we have shown that its rate of water oxidation can be greatly enhanced by electron transfer mediators such as Ru(bpy)(2)(bpz)(2+) (bpz is 2,2'-bipyrazine) in solution or Ru(4,4'-((HO)(2)P(O)CH(2))(2)bpy)(2)(bpy)(2+) on ITO (ITO/Sn) or FTO (SnO(2)/F) electrodes. In this Account, we describe a general reactivity toward water oxidation in a class of molecules whose properties can be "tuned" systematically by synthetic variations based on mechanistic insight. These molecules catalyze water oxidation driven either electrochemically or by Ce(IV). The first two were in the series Ru(tpy)(bpm)(OH(2))(2+) and Ru(tpy)(bpz)(OH(2))(2+) (bpm is 2,2'- bipyrimidine; tpy is 2,2':6',2''-terpyridine), which undergo hundreds of turnovers without decomposition with Ce(IV) as oxidant. Detailed mechanistic studies and DFT calculations have revealed a stepwise mechanism: initial 2e(-)/2H(+) oxidation, to Ru(IV)=O(2+), 1e(-) oxidation to Ru(V)=(3+), nucleophilic H(2)O attack to give Ru(III)-OOH(2+), further oxidation to Ru(IV)(O(2))(2+), and, finally, oxygen loss, which is in competition with further oxidation of Ru(IV)(O(2))(2+) to Ru(V)(O(2))(3+), which loses O(2) rapidly. An extended family of 10-15 catalysts based on Mebimpy (Mebimpy is 2,6-bis(1-methylbenzimidazol-2-yl)pyridine), tpy, and heterocyclic carbene ligands all appear to share a common mechanism. The osmium complex Os(tpy)(bpy)(OH(2))(2+) also functions as a water oxidation catalyst. Mechanistic experiments have revealed additional pathways for water oxidation one involving Cl(-) catalysis and another, rate enhancement of O-O bond formation by concerted atom-proton transfer (APT). Surface-bound [(4,4'-((HO)(2)P(O)CH(2))(2)bpy)(2)Ru(II)(bpm)Ru(II)(Mebimpy)(OH(2))](4+) and its tpy analog are impressive electrocatalysts for water oxidation, undergoing thousands of turnovers without loss of catalytic activity. These catalysts were designed for use in dye-sensitized solar cell configurations on TiO(2) to provide oxidative equivalents by molecular excitation and excited-state electron injection. Transient absorption measurements on TiO(2)-[(4,4'((HO)(2)P(O)CH(2))(2)bpy)(2)Ru(II)(bpm)Ru(II)(Mebimpy)(OH(2))](4+), (TiO(2)-Ru(II)-Ru(II)OH(2)) and its tpy analog have provided direct insight into the interfacial and intramolecular electron transfer events that occur following excitation. With added hydroquinone in a PEC configuration, APCE (absorbed-photon-to-current-efficiency) values of 4-5% are obtained for dehydrogenation of hydroquinone, H(2)Q + 2hnu --> Q + H(2). In more recent experiments, we are using the same PEC configuration to investigate water splitting.
                Bookmark

                Author and book information

                Book Chapter
                September 02 2016
                : 176-204
                10.1002/9781118839621.ch7
                58196a68-6055-419d-aabf-3b74e792eb6f
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,195

                Cited by4