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Abstract
Multi-temporal remote sensing imagery can be used to explore how mangrove assemblages are 
changing over time and facilitate critical interventions for ecological sustainability and effective 
management. This study aims to explore the spatial dynamics of mangrove extents in Palawan, 
Philippines, specifically in Puerto Princesa City, Taytay and Aborlan, and facilitate future predictions 
for Palawan using the Markov Chain model. The multi-date Landsat imageries during the period 
1988–2020 were used for this research. The support vector machine algorithm was sufficiently 
effective for mangrove feature extraction to generate satisfactory accuracy results (>70% kappa 
coefficient values; 91% average overall accuracies). In Palawan, a 5.2% (2693 ha) decrease was 
recorded during 1988–1998 and an 8.6% increase in 2013–2020 to 4371 ha. In Puerto Princesa 
City, a 95.9% (2758 ha) increase was observed during 1988–1998 and 2.0% (136 ha) decrease 
during 2013–2020. The mangroves in Taytay and Aborlan both gained an additional 2138 ha 
(55.3%) and 228 ha (16.8%) during 1988–1998 but also decreased from 2013 to 2020 by 3.4% 
(247 ha) and 0.2% (3 ha), respectively. However, projected results suggest that the mangrove 
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areas in Palawan will likely increase in 2030 (to 64,946 ha) and 2050 (to 66,972 ha). This study 
demonstrated the capability of the Markov chain model in the context of ecological sustainability 
involving policy intervention. However, as this research did not capture the environmental factors 
that may have influenced the changes in mangrove patterns, it is suggested adding cellular 
automata in future Markovian mangrove modelling.

Keywords: change detection, image classification, Landsat, land use/land cover, Markov chain model, spatial 
dynamics, support vector machine

Introduction
Mangroves are a group of complex trees and shrubs that naturally inhabit the intertidal zones of 
coastal tropical and subtropical regions [1,2]. Although they can tolerate a wide range of salinity, 
from hypersaline waters exceeding 100 parts per thousand to lower salinities of 2 parts per 
thousand [3], they cannot compete reproductively with other terrestrial plants because the latter 
have a better adaptation to a higher-elevation environment [4]. Mangrove forests are one of the 
most important coastal ecosystems because they provide bio-productivity, for example, timber and 
firewood, and they provide protection from natural hazards and regulation of natural phenomena, 
for example, floods, storm erosion and salt intrusion [1,5,6]. They serve as a nursery and a habitat 
for biodiversity, for example, breeding and spawning [7–9], they are of socio-economic and 
cultural importance, for example, providing livelihoods, ecotourism, recreation and are of aesthetic 
importance [10,11], and help mitigate climate change, for example, carbon sequestration [10,12].

There are about 65 mangrove species around the world [13], of which at least 50% currently 
grow in the Philippines [14]. According to the Food and Agricultural Organization [15], Asia has 
more extensive mangrove forests than any other continent. The Philippines is considered one of 
the top biodiversity ‘hot spot’ countries in the world [16]. The Palawan Council for Sustainable 
Development Staff (PCSDS) [17] initially reported 27 mangrove species in Palawan. About 22.23% 
(56,261.3 ha) of the remaining mangrove forests in the Philippines are found in Palawan [18]. 
However, the ability of this ecosystem to colonise and maintain its spatial setting is increasingly 
being affected by anthropogenic disturbances [19]. Consequently, mangrove forest cover in the 
Philippines has decreased from approximately 500,000 ha in 1918 to about 120,000 ha by the end 
of 1995 [20,21]. Dodd and Ong reported that the two main contributing factors for this decline 
are overexploitation of raw product and coastal land use conversions (e.g., agriculture, residential 
settlements, industrial and aquaculture) [21]. Although recent estimates from the Department of 
Environment and Natural Resources (DENR) [22] suggest an increase in mangrove extent in 2003 
(to 247,362 ha), this estimate is still much lower than the estimated area covered in the previous 
century.

Mangrove ecosystems form a complex structure (e.g., less accessible Rhizophora’s complex 
bifurcated and looping root structures), and the technical skills required and cost associated with 
taking forest samples make extensive in-situ sampling difficult. Thus, remote sensing techniques 
provide a convenient tool to map, assess and monitor the mangroves over large areas and can 
be used to detect change over time [23–25]. In the Philippines, the utilisation of remotely-sensed 
satellite data (e.g., [18]) has been incorporated into policy formulation and enforcement. However, 
mangrove-related projects in the country remain relatively scarce with only a few national and local 
mapping efforts focused on the classification and detection of changes in the mangrove’s extent, 
notably from the nominal years of 1990–2010 [26] and 2003–2013 [27]. Despite the low utilisation 
of mangrove remote sensing in the Philippines and the absence of projected data about how 
the remaining mangroves in the country will respond to the impacts of climate change, scientific 
interest in mitigating and controlling the magnitude of climate change’s impacts on mangrove 
ecosystems has increased in Southeast Asian countries [28]. The mangroves of Palawan have been 
protected under direct human inventions through the International Union for Conservation of Nature 
(IUCN) protected area Category I–IV [18] and the 1992 Republic Act No. 7611, commonly known 
as the Strategic Environmental Plan for Palawan Act (SEP Law) [29]; yet this unique ecosystem 
remains under threat due to climate change and the associated rising sea levels [18,30].

Several land use/land cover (LULC) techniques have been developed and utilised in the last 
three decades, which primarily aim to investigate the spatiotemporal changes of LULC patterns 
using satellite data to assist in ecological management and decision-making [31]. The parametric 
(e.g., maximum likelihood classifier [32]) and nonparametric (e.g., artificial neural networks [33]) 
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classification algorithms can handle complex classification tasks [34]. To perform the classification 
using a supervised classification technique, training samples must be extracted, which can be 
time-consuming when using multi-temporal remotely sensed imagery. Unsupervised classification 
techniques have also been used to map mangrove extent and change over time, for example, using 
vegetation indices (e.g., the Normalised Difference Vegetation Index, the Mangrove Vegetation 
Index [35,36]) and clustering and threshold techniques (e.g., [37]). The Markov chain model 
[38,39] is one of many prediction techniques that are able to assess the LULC changes and make 
a projection of these changes in the future [40–43]. Understanding the patterns of change in 
mangrove geographic distribution and projecting the range of shifts in the future will link science to 
policy and decision-making processes for biodiversity conservation and management [44].

Through the Global Challenges Research Fund (GCRF) Blue Communities (BC), this research aims 
to: (1) develop a mapping approach to investigate the changes in mangrove extents in Palawan 
using multi-temporal Landsat imagery during the years 1988, 1993, 1998, 2003, 2008, 2013, 2018 
and 2020; (2) determine the areal extent of change in mangrove forests in Palawan including the 
three case study areas of GCRF BC from 1988 to 2020; and (3) implement change projections of 
the mangrove forests in Palawan for 2030 and 2050 using a Markov chain model.

Materials and methods

Study area

Palawan is a long and narrow island province in the Philippines (09°30′N and 118°30′′E) with an 
approximate total area of 1,489,626 ha and is located at the western portion of the archipelago 
(Fig. 1) [17,45]. Its almost 2000 km coastline is one of the longest shorelines in the country and 
accounts for about 1780 islands. The South China Sea borders the western coast while the Sulu 
Sea and the Malaysian Sabah Island border the eastern and southern sides of Palawan [46]. The 
island comprises 23 municipalities, one urbanised city (Puerto Princesa) and 433 small villages 
called ‘barangay’ [47].

Palawan is known as the Philippines’ ‘last ecological frontier’ due to its rich culture and biodiversity 
[48]. As per Presidential Proclamation No. 2152 of 1981, all mangrove forest areas in the province 
are protected as Palawan has been declared a Mangrove Swamp Forest Reserve [17,45]. In 1991, 
Palawan was designated as a biosphere reserve under the Man and the Biosphere Programme 
(MAB) of the United Nations Educational, Scientific, and Cultural Organization (UNESCO). The 
following year, the 1992 SEP Law assisted the MAB’s declaration in the sustainability of Palawan’s 
biological and cultural diversity. In succeeding years of recognising the biodiversity richness of 
the province, two out of nine UNESCO World Heritage Sites in the Philippines are to be found 
in Palawan: the Puerto Princesa Subterranean River National Park (inscribed in 1999) and the 
Tubbataha Reefs Natural Park (inscribed in 1993, 2009) [48].

Mangroves form one of the components of the coastal and marine ecosystems in the Philippines 
[49]. They are susceptible to various effects of climate change such as sea-level rise [50]. Therefore, 
adoption of various climate change adaptation interventions such as the National Framework 
Strategy on Climate Change [51] and the development of the Philippine exposure map on climate 
change [52] have been of great importance for the identification of vulnerable areas of Palawan that 
are the most susceptible to climate change.

The entire methodological process of mangrove classification and predictive modelling underwent 
three major processes: (1) raw data and pre-processing; (2) image classification and change 
detection; and (3) mangrove change projection (Fig. 2).

Pre-processing the Landsat sensor data

The multi-temporal resolution and multi-spectral Landsat 4–5 Thematic Mapper (TM), Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) images in 
multiple years between 1988 and 2020 were used for this study (Table A1 in Appendix A). A total of 
20 scenes for TM (for years 1988, 1993 and 1998), 18 scenes for ETM+ (for years 2003, 2008 and 
2013) and 11 scenes for OLI (for years 2018 and 2020) were sourced using the Semi-automatic 
Classification Plugin (SCP) version 7.9.0 Matera in Quantum Geographical Information System 
(QGIS) version 3.22.1 Białowieża.
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To normalise various conditions across the multi-temporal and multi-spatial Landsat datasets, it is 
imperative that Landsat data undergoes pre-processing routines to enhance the quality and remove 
various radiometric and geometric errors in each image [53–56]. Thus, radiometric calibration and 
atmospheric correction were employed for this study.

Figure 1

A map of Palawan, Philippines 
highlighting the southern and northern 
divisions and three of the GCRF BC’s 
case study areas – Puerto Princesa City 
and the municipalities of Taytay and 
Aborlan. 
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The 2018 OLI Level-2 data were used as the reference images to apply geometric correction to the 
satellite images in each epoch. The parameters of this transformation function were derived from a 
spread of 200 ground control points (GCPs), which were uniformly chosen from distinct topographic 
features throughout the target image. To match with the original pixel size of the Landsat data, 
all images were resampled to a ground resolution of 30 × 30 m and reprojected to WGS 84 UTM 
datum. The root mean square error (RMSE) of 0.25 pixel was calculated and was deemed enough 
to facilitate accurate LULC change detection analysis [57]. Throughout these processes, the 
nearest neighbour resampling algorithm was employed to maintain geometric integrity across all the 
images.

Radiometric correction followed the geometric correction [55]. Upon checking the image noise 
(e.g., dropouts and bit errors) for TM and ETM+ images using the Environmental Systems Research 
Institute’s ArcGIS version 10.7.1, a correction was not necessary. The next process of radiometric 
calibration involved the conversion of the signal of the quantified energy from multi-spectral 
brightness values or digital numbers (DNs) into top-of-atmosphere (TOA) reflectance units. In 
particular, this process involved two steps: (a) the conversion of DNs to spectral radiance (Lλ) and 
(b) the transformation to TOA reflectance (ρλ) as corrected for illumination variabilities (i.e., sun angle 
and Earth–sun distance) within and between scenes [55,56,58,59]. For the TM and ETM+ data, 
Eqs (1)–(5) were applied, respectively:

				    L DN G Bλ = × + � (1)

where Lλ corresponds to the radiance measured at the sensor bandwidth for each band 
(W m−2 sr−1 μ−1); DN is the digital number value; G and B are the (gain) slope and (bias) intercept of 
response functions, calculated as follows:

			   max min min( / )B L L L Q Q Q= − − − ×min max min � (2)

			   ( )max min max min/G L L Q Q= − −
�

(3)

where Lmin and Lmax are the lowest and highest radiance measured by a detector in mW cm−2 sr−1, as 
reported by TM and ETM+ metadata files; Qmin and Qmax correspond to the minimum and maximum 
values of DN for TM and ETM+ sensors, ranging from 1 to 255. The TOA reflectance (ρλ) calculation 
for each band applied on a pixel-by-pixel basis for each scene in each epoch and the output 
reflectance values were scaled to an 8-bit data range, this can be calculated as:

				  

( )2

o s

L d

E cos

π
ρ

θ
λ

λ
λ

× ×
=

× �
(4)

where d is the Earth–sun distance correction; Lλ is the radiance as a function of bandwidth; E0λ 
is the mean solar exoatmospheric irradiances and θs is the solar zenith angle. The application of 
absolute atmospheric correction and relative correction followed the corrections of sensor gains 
and offsets spectral band solar irradiance and solar zenith angle, and the topographic normalisation 
implementation. The removal of additive path radiance (Lp) was calculated using Eq. (5) based 
on the dark-object subtraction (DOS) 1% technique [60–62]. The DOS assumes that the lowest 

Figure 2

Diagram of multi-temporal mangrove 
change detection in Palawan using the 
Landsat imageries, supervised support 
vector machine classification and the 
Markov chain model. 
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reflectance value for dark objects across the image is 1% and any values greater than zero can 
be attributed to the additive effects of haze [41,55,63]. The relatively constant errors removal was 
implemented using the formula:

	
[ ]max min v

p min min o s z down

( )
0.01 ( )

255
L L T

L L DN E cos T Eθ
πλ

− = + × − × × × + ×  
�

(5)

where Lp is the path radiance; DNmin has adopted the histogram technique [60] allowing the haze 
DN value to be automatically calculated from the DN frequency histogram of the image; and Tv and Tz 
are assumed to be equal in state thereby downward diffusion of radiation at the surface (Edown = 0) is 
absent [60].

Spectral bands selection

In LULC classification, different land cover classes may respond to different ranges of wavelengths, 
and not all spectral bands are useful for the analysis. Consequently, it is imperative to appropriately 
identify the useful ranges of wavelength as the procedure increases class discrimination [64]. 
Chen et al. made an assumption that the low reflectance of mangroves in the short wavelength 
infrared (SWIR) region of the electromagnetic spectrum was due to the weak-scattering signal 
of the intercellular structure of the leaves [65]. Unsurprisingly, the low reflectance of the mixed 
mangrove assemblage with the surrounding mud and water could further reduce the reflected 
radiance of mangroves in general. Therefore, they used the Jeffries–Matusita distance technique 
to calculate the spectral separability among the LULC classes. This technique was adopted for 
this research and was conducted using the spatialEco package version 1.3–7 in R programming 
software [66–68].

The Jeffries–Matusita criterion measures the distance between the means of each class feature 
and the distribution of values around the means, giving a measure of spectral separability between 
the features of the class, and was thus able to determine the quality of the target class samples 
[68,69]. Values range from 0 to 2, where 2 indicates high separability while the lower values indicate 
a possible misclassification of the classes [70]. In the latter case, distances registered below the 
threshold of 1 were removed from the prioritised band image. Additionally, we have considered 
the Jeffries–Matusita values between 1.7 and 1.9, as good class separability [63]. In this study we 
combined the equivalent bands of each sensor to give an overall distance for the colour band. The 
generated results for the Jeffries–Matusita distance calculation indicate that the highest levels of 
separability between the mangrove vegetation and non-mangrove vegetation classes were observed 
for bands 5–4–3 for TM and ETM+ and 6–5–4 for OLI (Table 1). Thus, the band combination of 
SWIR1–NIR–Red was selected as the most appropriate band for the entire image classification.

Cloud patching process, stacking, mosaicking and masking

Clouds and cloud shadows have a significant effect on the satellite sensors’ spectral bands 
reflectance values [71] and degrade the quality of the sensors’ data [72]. Therefore, the Landsat 
database was searched for the clearest satellite images of the study area with the lowest cloud 
cover. However, for images where clouds are present, more than one scene from the same epoch 

Table 1. Spectral separability results using the Jeffries–Matusita distance technique to isolate 
the differences between the mangrove vegetation and non-mangrove areas for each band of TM, 
ETM+ and OLI sensors

TM bands   ETM+ bands   OLI bands  Band name  Jeffries–Matusita

1   1   2   Blue   0.51

2   2   3   Green   0.75

3   3   4   Red   1.63

4   4   5   NIR   1.86

5   5   6   SWIR 1   1.91

6   6   10   Thermal   0.72

7   7   7   SWIR 2   1.25
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was acquired to facilitate the cloud patching process using the Fmask algorithm [71,73]. The 
selection of different eras was based on the availability of quality data. Thus, the year 2021 was 
excluded from the potential list of options because most of the data available were poor in quality. 
All the selected bands were stacked together and created a seamless mosaic of the study area. The 
ocean areas were masked out using the Normalised Difference Vegetation Index with a threshold of 
cut-off of 0.5 [65].

Image classification and change detection analysis

To delineate the mangroves of Palawan, this study used the support vector machine (SVM) classifier 
algorithm. This linear supervised non-parametric statistical learning theory has been proven 
effective in LULC research [74–76]. The SVM-based classifier requires a training sample and one of 
the advantages of this technique is that it can generalise well from a limited amount of training data 
compared to alternative methods [74]. This algorithm uses successive executions of a process until 
it generates the probabilistic estimates for known and unknown classes. In this entire procedure, 
the Bayesian minimum-error decision rule is adopted [77].

The overall accuracy results of SVM depend on the kernel used as well as the chosen kernel’s 
parameters and methods [78]. We chose the parameters gamma (G) in the radial basis function 
(RBF) kernel and the C hypermeter in SVM to control the error, using the cross-validation (CV) 
optimisation technique [79]. We set the default threshold values of 0.091 for G and 100 for penalty 
parameter C to gain a lower bias and penalise incorrect classification heavily [75]. The RBF kernel 
formula is shown below:

			   ( ) 2, exp( | – | ), 0K x x g x x g= − >′ ′ � (6)

where ||x − x′||2 is the squared Euclidean distance between two data points, x and x′; g is the user-
defined gamma. Across the series of Landsat data, we created two spectral classes including (a) 
mangrove vegetation, that is, intertidal halophytic forests both natural and rehabilitated, and (b) 
non-mangrove areas, for example, rivers, estuaries, lakes, sea, tidal mudflats, agricultural areas, 
grassland, high- and lowland forests, bushes, residential and industrial areas in rural and urban 
regions, aquaculture ponds, salt pans, etc. A random sampling technique was used to select a 
minimum of 400 pixels for each spectral class. For all the classified Landsat images, the total 
mangrove areas were quantified.

Assessing the accuracy of multi-decadal mangrove change is challenging due to the limited 
availability of in-situ reference datasets in the time period of interest [80]. In this work, the accuracy 
of mangrove classification was assessed using government data derived from the 2010 historical 
record of the National Mapping and Resource Information Authority (NAMRIA). The training 
mangrove forest polygons were validated through the established testing samples and the accuracy 
was assessed using the producer’s accuracy, the user’s accuracy, the overall accuracy and the 
kappa coefficient values [81]. This study produced >86% overall accuracy results by which the 
definite mapping identification of different land use/land cover categories generated valid results 
[82]. Furthermore, the kappa analysis for this study generated results >70%.

Upon completing the rigorous pre-processing, image classification and validation procedures, we 
conducted the change detection for Palawan and the three case study areas of GCRF BC, using 
the SCP version 7.9.0 Matera in Quantum in QGIS version 3.22.1 Białowieża, to determine the 
magnitude of changes in mangrove vegetation and non-mangrove classes, and the trends of these 
changes across three time periods (1988–1998, 1998–2008 and 2008–2020).

Mangrove change projection

A Markov chain is a stochastic process that describes the likelihood of changing one state to 
another [83] through the implementation of neighbourhood rules [84]. The Markovian process has 
been implemented in many LULC studies due to its efficiency in future land use prediction [40–
42,85]. In mangrove forest spatial classifications, the integration of the Markov chain model [65] and 
its cross-functional application with cellular automata [85,86] is growing considerably.

In statistical terms, the Markov chain modelling can effectively make a prediction of the changes 
in LULC based on the calculation of the transition probabilities of one system at time t2 with the 
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state of the system at time t1 according to the specific year [41,87]. The transition probability matrix 
[88] is one of the descriptive tools generated in the process where the mangrove areas transitional 
matrix is derived from different mangrove classes [86]. The Markov processes used in this study are 
expressed in Eqs (7–9):

				    2 1t tv Mv= � (7)

where the input LULC proportion column vector corresponds to vt1 and the output vector to vt2; M 
is an m × m transition matrix for the time interval Δt = t2 − t1. The development of the probability 
transition matrix (pij) can be calculated as follows:

				    1

q

i ij
j

n n
=

= ∑
�

(8)

				    /ij ij ip n n= �
(9)

where nij is the number of pixels of class i from the first date (current state) that were changed to 
class j in the second date (next period); cell ni is in the change detection matrix by row marginal 
frequency; q is the total number of classified classes; and pij is the land-cover probabilistic 
transition matrix. We have conducted three projections using the Markov chain model. The first 
one was the mangrove projection for 2013 using the 1988–1993 datasets. In the second and third 
projection scenarios, we chose the years 2013–2020 datasets to predict the spatial changes of 
mangroves for the years 2030 and 2050. Using the IDRISI Environment version 17.00, the Markov 
chain transition probability matrix was generated.

Model validation of the Markovian process
We validated the model by comparing the simulated mangrove and non-mangrove areas in 2013 
with the observed data in the 2013 ETM+ map. The output was tested with observed values using 
the Pearson’s chi-squared (χ2) test to examine the appropriateness of the model:

				  

( )2

2 O E

E
χ

−
= ∑

�
(10)

where O represents the simulated value (1988–1993) and E is the actual value of the transition 
matrix (2013–2020). The calculated χ2 is compared with the χ2 from the table at alpha-level of 0.05 
with (2 – 1)2 degrees of freedom. The land-use change analysis is compatible with the hypothesis of 
data independence if the computed χ2 is smaller than the tabled-value χ2.

Results

Spatiotemporal distribution of mangroves and comparison with the previous 
records

Our mapping classification resulted in two major classes, the mangrove forests and non-
mangrove areas. We have presented in Fig. 3 the spatiotemporal distribution of mangroves in 
Palawan within the span of 32 years, particularly the time periods of 1988, 1993, 1998, 2003, 
2008, 2013, 2018 and 2020. We observed that mangrove forests in Palawan were generally 
concentrated around the coastal boundaries, particularly in estuarine fringes, bays, riverbanks 
and the margins between land and sea. Based on this study and the previous records, the 
mangrove forest cover in Palawan was still relatively high compared with the other provinces in 
the Philippines (e.g., [18]).

The largest mangrove concentrations in Palawan were found in the eastern part of the island. These 
mangroves form dense and continuous stands in Puerto Princesa City (PPC), Bataraza, Balabac 
and Brooke’s Point in the south, and in the municipalities of Taytay, Coron, Busuanga, Culion, 
El Nido, Aracelli and Dumaran in the north. In PPC, the greatest concentration of mangroves is 
generally found in Puerto Princesa Bay, Honda Bay, Ulugan Bay and Turtle Bay.
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The classified maps from 1988 to 2020 showed that the largest area of mangroves in Palawan 
was recorded in 2020 (60,033.8 ha) while the year 1998 (48,745.3 ha) had the least extent (Fig. 3). 
The lower total area calculated for 1998 is likely due to misclassification as a result of minor cloud 
patches, especially in the northern part of Palawan. Our estimate for this year, however, does not 
deviate too far from the estimates in 1993 (50,045.3 ha) and 2003 (52,961.5), respectively.

Figure 3

Spatiotemporal distribution of 
mangroves in Palawan in a span of 
32 years from 1988 to 2020. 
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In consideration of the funder of this study, we also separately quantified the mangrove extents in 
PPC, Aborlan and Taytay. Two of the GCRF BC’s smaller geographical case study areas (barangay) 
were located in Aborlan municipality while PPC and Taytay municipality both had four case study 
locations each. Among these three major boundaries, Taytay had the largest mangroves cover 
followed by PPC and Aborlan (Fig. 4). The mangrove areas in Taytay showed an increase since 1988 
(3865.1 ha) and peaked in 2008 (7591.8 ha) before the trend showed a gradual decrease until the 
most recent estimate in 2020 (7103.6 ha). Similarly, the mangroves in PPC also exhibited a pattern 
of increase from 1988 (2876.3 ha) and reached the highest records in 2008 (6621.4 ha) and 2013 
(6738.1 ha) before the total estimates dropped. Unlike the two previous locations, the mangrove 
forests in the municipality of Aborlan demonstrated an increasing trend from 1993 (1287.7 ha) to 
2020 (1839.7 ha). However, the total mangrove area in Aborlan accounts for only about <25% and 
<30% of the overall mangrove forest covers in Taytay and PPC, respectively.

One of the most challenging aspects of classifying the non-mangrove areas in this study was 
the areal immensity of Palawan. The largest estimate for non-mangrove areas was recorded in 
1998 at 1,375,197.7 ha (Fig. 5). Mainly, the non-mangrove areas identified were highland and 
lowland forests, agricultural areas and built-up areas (e.g., residential and industrial areas in rural 
and urban localities). A trend of decrease in non-mangrove areas was evident from 1998 to 2020 
(1,363,909.2 ha). The smallest change, at approximately 250 ha, was recorded between 2018 
(1,364,168.1 ha) and 2020.

To visualise the mangrove forests extents in Palawan across the different time periods, which used 
different techniques and resources, the result of this study particularly for the years 2020, 2018 and 
2013 were presented along with other previous estimates. As shown in Fig. 6, our estimates for the 
total areal extent of mangrove forests in Palawan are similar to other estimates from 1992 to 2015, 
except for the estimate of [89] at only 43,000 ha which was the lowest among all the gathered data. 
In the 1990s, the earliest records of mangrove estimates were obtained by the Japan Forest and 
Technology Association (JAFTA) [90] and NAMRIA. Our current estimate for 1993 (50,045.3 ha) was 
much lower compared with the previous records of DENR-JAFTA [90] and NAMRIA at 50,602 ha 
and 51,346 ha, respectively. However, our estimate for 1998 (48,745.3 ha) had about a 5% margin 
with the NAMRIA’s record (51,346 ha). In 2005, the PCSDS utilised the Satellite Pour I’Observation 
de la Terre (SPOT) satellite sensor’s images to delineate the extent of mangroves in Palawan and 
generated approximately 58,400 ha. Based on the mangrove data extraction made by Richter 
et al. [91] from the Global Mangrove Watch (GMW), in accordance with the same mangrove areal 
estimates that were originally created by Bunting et al. [92], the GMW figures from 2007 to 2010 
had a very slight difference with the 2008 estimate (53,877 ha) for this study. Unsurprisingly, among 

1988 1993 1998 2003 2008 2013 2018 2020

Palawan 51,438.2 50,045.3 48,745.3 52,961.5 53,877.2 55,302.4 59,774.9 60,033.8

PPC 2876.3 2056.3 5634.2 5922.7 6621.4 6738.1 6709.4 6601.8

Taytay 3865.1 3311.5 6003.4 6120.8 7591.8 7351.5 7285.1 7103.6

Aborlan 1363.4 1287.7 1591.8 1553.4 1697.6 1842.5 1803.2 1839.7
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Figure 4

Composite representation of area 
statistics of mangroves in Palawan 
(left y-axis), PPC, Taytay and Aborlan 
(right y-axis).
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all the references cited in this study, NAMRIA recorded the highest estimates at 63,532 ha in 2010 
[15], which was higher than the GMW data in the same year (53,731 ha) and even higher than our 
most recent estimate for 2020. Our current study revealed a minor difference in the increase of 
mangrove forests, showing at least 59,774.2 ha in 2018 and 59,9925.8 ha in 2020, respectively 
(Fig. 6). Surprisingly, the mangrove forests assessment of Long and Giri [18] revealed a sudden 
decrease in mangrove areas in just a year span. Our estimates for 2013 at 55,302.4 ha had a minor 
margin of difference with the approximation obtained by Long and Giri [18].

The result of mangrove forest covers we obtained in 1993 (1287.7 ha) for Aborlan was 
comparably lower than the estimation made by [93] in 1992 (1494.8 ha). However, a small gap in 
the estimated values was determined between the work of Venturillo [93] in the same period and 
this study in 1998 (1591.8 ha; Table 2). Additionally, this study estimated the mangrove forests in 
Aborlan in 2008 at about 1676.6 ha which was higher than the GMW data (1341.3 ha). Although 
the interval of years was relatively small between 2010 and 2013, the assessment made by 
Jansen [94] in 2010 at 1202 ha was distinctly lower than the estimates from GMV [92] and our 
result for 2013 (1842.5 ha). Unsurprisingly, from the time periods 2013–2018, the GVM data for 
2015 and 2016 [92] are similar, when in fact variations in areal changes were evident between 
2013, 2014 and 2016. However, all the assessments reported for Aborlan revealed a similar 
pattern where mangrove forest cover increased from inclusive time periods 1992, 1993, 1998, 
2010, 2013, 2014 and 2016.

Figure 6

Representation of mangrove forest 
areas in Palawan based on the previous 
estimates (grey bars) and the results of 
this study (blue bars). 
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Estimated total cover of non-mangrove 
areas in Palawan from 1988 to 2020.
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In the municipality of Taytay, our estimated result obtained in 2008 has a close margin of difference 
from the GMW data. However, unsurprisingly our estimates for 2013 (7351.5 ha) and 2018 
(7103.6 ha) differed significantly from the data gathered by Jansen [94] in 2010 (1578 ha) and 2016 
(3905 ha; Table 2). A similar interpretation applies to the data by [94] in 2010 and from the GMW 
report in the same year where the former generated a very low estimate (1578 ha) against the latter 
figure of 6715.5 ha.

Pagkalinawan and Ramos [27] estimated the total mangrove forests extent in PPC at 3201.8 ha. 
It was less than our calculated results for 1998 (5634.2 ha) and 2003 (5922.7 ha), respectively 
(Table 2). On separate assessments, Jansen [94], Bunting et al. [92] and Pagkalinawan and Ramos 
[27] recorded 4020 ha, 5773.3 ha and 4577.2 ha of mangrove forests in 2010 and 2013. We 
obtained a relatively higher estimate in 2013 (6738.1 ha) compared with Pagkalinawan and Ramos 
[27] in the same year. We only observed an almost 100 ha difference between the estimates of 
Jansen [94] in 2016 and the quantified extent made by Bunting et al. [92] in the same year. However, 
between 2016 and 2020, an almost 1000 ha difference was observed between the previous and 
current estimates.

Accuracy assessment

Using the 2010 LU/LC NAMRIA map as our ground reference data, the mangrove classification 
accuracies for years 1988, 1993, 1998, 2003, 2008, 2013, 2018 and 2020 were generated. The 
comparative accuracy measurements yielded satisfactory agreements across all the years. The 
highest and lowest overall accuracies and kappa coefficient values for the mangrove forest 
class were produced in 2020 (92.90% and 0.91) and 1993 (86.66% and 0.73) classification 
maps, respectively (see Figure A1). The highest and lowest user’s accuracy in the classification 
of mangrove forest features were generated in the years 2003 (95.76%) and 1993 (86.04%). 
These suggest the commission errors of 4.24% and 13.96%, in which the pixels identified in 
the map as mangrove forest class actually represent an incorrect class based on a reference 
image. On the other hand, the generated producer’s accuracy quantifies the probability that 
a pixel was classified as something other than that class. The year 2013 yielded the highest 
producer’s accuracy (6.73% omission error) and the eras of 1998 and 1993 were at the lowest 

Table 2. Comparison of mangrove forest areas in Taytay, Aborlan and PPC based on the previous 
estimates and the results of this study

Year (Reference) 
 

Mangrove forest cover (Ha)

PPC   Taytay   Aborlan

1992 [93]   –   –   1494.8

1993   –   –   1287.7

1998   5634.2*   –   1591.8*

2003   5922.7*   –   –

2003 [27]   3201.8   –   –

2007 [91]   5839.8   6727.1   1340.7

2008 [91]   5835.7   6714.2   1341.3

2008   6621.4*   7591.8*  1697.6*

2009 [91]   5816.3   6713.2   1341.3

2010 [94]   4020.0   1578.0   1202.0

2010 [91]   5773.3   6715.5   1341.3

2013 [27]   4577.2   –   –

2013   6738.1*   7351.5*  1842.5*

2014 [93]   –   –   1866.8

2015 [91]   5754.8   6601.0   1337.2

2016 [94]   5668.0   3905.0   1655.0

2016 [91]   5754.8   6601.0   1337.2

2018   6709.4*   7285.1*  1740.3*

2020   6601.8*   7103.6*  1839.7* 

The ‘*’ symbol denotes the estimates from this study. The GMW estimates were sourced from Richter et al. [91] 
and are based on the measurements by Bunting et al. [92].
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rank (11.80% and 11.56% omission errors). We presumed that the low overall accuracy and kappa 
coefficient values generated for 1993 were due to the poor satellite image quality. During this 
period, the cloud cover in two of the six scenes [refer to Table A2 in Appendix A: WRS Path 116/
Row 052 (cloud cover = 3, cloud land cover = 13) and WRS Path 118/Row 054 (cloud cover = 8, 
cloud land cover = 20)] made marginal spectral confusion between different features. Generally, our 
classifications only produced <15% commission and omission errors for both mangrove forest and 
non-mangrove area classes (see Table A3).

Mangroves change detection

We carried out change detection analysis for mangroves in Palawan by comparing multiple years 
in discrete intervals (e.g., 10-year gap, 7-year gap). The results of the change detection statistics 
within the four time periods (1988–1998, 1998–2008, 2008–2018, 2013–2020) showed that the 
mangrove extents in the Palawan dramatically increased for the last 32 years (Fig. 4, Table 3). The 
periods with the greatest change in mangrove forest extents in Palawan were recorded in 2008–
2018 and 1998–2008, showing at least 10.95% (5897.7 ha) and 10.53% (5131.9 ha) increase since 
the time periods 1998–2018 (Table 3, Fig. 7a,b). However, we also noted the reduction in mangrove 
forest cover during the time period 1988–1998 at 5.24% (2692.9 ha) loss. Although this decrease 
might imply disturbance in the mangrove ecosystems in the study area, we did not exclude from 
our conclusion that this figure could be attributed to the spectral confusion of the different classes 
during the classification stage (see Table A3).

Concurrently, the mangrove forest cover in PPC showed a sharp increase from 1988 to 1998 at 
about 2757.9 ha (95.88%). However, unlike the increasing trend in Palawan in 2013–2020, the 
percentage of change at 2.02% (136.3 ha) in the mangrove forest cover in PPC on the same time 
period showed a slight decrease. Most of the mangroves in PPC were found in the eastern seaboard 
of the study area, forming dense and narrow canopies along the riverbanks, estuarine regions 
and margins of the bays, particularly in Honda Bay, Puerto Bay and Turtle Bay. The only notable 
concentration of mangroves in the western seaboard of PPC was found in Ulugan Bay (Fig. 7c).

Similarly, the municipality of Taytay also established an increase from the time periods 
1988–1998 and 1998–2008 with the percentage of increase at about 55.32% (2138.3 ha) and 
26.46% (91,588.4 ha), respectively (Table 3). Since 2008, the mangroves in this region suffered a 
consecutive loss, particularly with the reducing rates of 4.04% and 3.37% in 2008–2018 and 2013–
2020, respectively. Despite this decrease, the mangrove extent in Taytay remained relatively higher 
than PPC and Aborlan (Fig. 3). These mangroves were mostly concentrated in Taytay Bay and 
along the Malampaya Sound area. The thick mangrove assemblages within the inner south-eastern 
portion of the Malampaya Sound were notable in the classified map. Furthermore, mangroves were 
seen forming boundaries along the coastlines of smaller and larger islands in Taytay Bay, especially 
in the north-eastern part of the bay (Fig. 7d).

In comparison with the mangrove forests in Taytay and PPC, the municipality of Aborlan only 
suffered a small loss in mangrove assemblages during 2013–2020 (0.15%, 2.8 ha; Table 3). For 
the period of 20 years, the mangrove forest cover in Aborlan increased, although the extent of 
expansion was relatively lower than PPC and Taytay. Despite the similarities in the pattern of 
changes in Palawan, we did not exclude the possibility that the variations in tidal inundation and 
the time of the data acquisition may influence the estimations. Although we did not exclude the 

Table 3. Changes in mangrove forest distribution in Palawan during (a) 1988–1998, (b) 1998–2008, 
(c) 2008–2018 and (d) 2013–2020

Time period  
 

Palawan  
 

PPC  
 

Taytay  
 

Aborlan

Area (Ha)  % Area (Ha)  % Area (Ha)  % Area (Ha)  %

1988–1998   2692.9∇   5.24∇   2757.9▲   95.88▲   2138.3▲   55.32▲   228.4▲   16.75▲

1998–2008   5131.9▲   10.53▲   987.2▲   17.52▲   1588.4▲   26.46▲   105.8▲   6.65▲

2008–2018   5897.7▲   10.95▲   88.0▲   1.33▲   306.7∇   4.04∇   105.6▲   6.22▲

2013–2020   4731.4▲   8.56▲   136.3∇   2.02∇   247.9∇   3.37∇   2.8∇   0.15∇

The percentage of reduction or increase in mangrove extents in each region was quantified based on the calcu-
lation used by [65]: (Sj−Si)/Si × 100, where Sj and Si represent the total areas in each categorical class in the ith 
and jth time periods. The symbol ‘▲’ denotes the percentage and areal increase in mangrove forests while the 
decrease is denoted by the symbol ‘∇’, respectively. 
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possibility that mangroves can also be found in the western seaboard of Aborlan, for this study we 
only recorded the mangroves in the eastern seaboard portion. Notably, the small islands of Puntog 
and Malunot generally had thick mangrove assemblages (Fig. 7e).

There was a clear pattern of change in non-mangrove areas in Palawan from 1988 to 2020. 
An increasing trend was seen from 1988 to 1998 before a spike of decrease happened. The 

Figure 7a

Changes in mangrove forests in 
Southern Palawan from 1988 to 2020.
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evidence of decreasing trend continued from 2003 to 2020 (Fig. 4). We assumed that these 
changes incorporate growth in closed-forest areas and the residential, industrial and agricultural 
developments in the region. Moreover, we also presumed that tourism growth and infrastructure 
expansion projects (e.g., construction of national roads or highways) play a critical role in the 
elaborated expansion of non-mangrove areas in Palawan.

Figure 7b

Changes in mangrove forests in 
Northern Palawan from 1988 to 2020.
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Mangrove forests projection and model’s accuracy

The Markov’s transition probability matrix was generated for the two time periods, 1988–1993 and 
2013–2020 (see Appendix A). These numbers suggested the probabilities of change in mangrove 
forest and non-mangrove area classes in Palawan. The projected areal extent of mangroves for 
2013 (52,414.5 ha) corresponds slightly with the observed 2013 extent at 51,438.2 ha (Fig. 8a), 
which indicated fewer variations between the two datasets. For this instance, we confirmed that 

Figure 7c

Changes in mangrove forests in Puerto 
Princesa City from 1988 to 2020.
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the transition matrices between 1988 and 1993 could be effective for predicting the dynamics of 
change in the mangrove forests and non-mangrove areas in Palawan.

We found that the mangrove forests in the region will likely increase by 8.18% (64,946.3 ha) 
and 11.56% (66,972.1 ha) in the years 2030 and 2050 (Fig. 8c). Conversely, it was projected 
that the non-mangrove areas in Palawan were likely to reduce by 4.53% (1,302,149.6 ha) and 
7.21% (1,265,498 ha) in 2030 and 2050, respectively (Fig. 8d). There was a slight increase in 

Figure 7d

Changes in mangrove forests in Taytay 
from 1988 to 2020.
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mangrove forests in Palawan for the simulated time period 2030 (64,946.3 ha) compared with 2013 
(52,414.5 ha) and 2050 (66,972.1 ha; Fig. 8a,c).

The result of the accuracy assessment using the time period 1988–1993 and the projected 2013 
output was evaluated using a χ2 test, indicating a value of 150.8 which was larger than 3.841 for 
the critical level of P = 0.05 with (2 – 1)2 degrees of freedom. This suggests that the hypothesis of 

Figure 7e

Changes in mangrove forests in Aborlan 
from 1988 to 2020.
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statistical independence for the data was rejected. Therefore, predictive modelling using the Markov 
chain can be used for forecasting mangroves in Palawan.

Discussion
The course of major development in Palawan was started in 1981 with the implementation of the 
Palawan Integrated Area Development Project [95]. Following the acquisition of Landsat data for 
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Figure 8

Projected probability of changes in 
mangrove forests and non-mangrove 
areas in Palawan. (a) Mangrove forests 
projection for 2013 using the time 
period 1988–1993. (b) Non-mangrove 
areas projection for 2013 using time 
period 1988–1993. (c) Mangrove forests 
projection for 2030 and 2050 using 
the time period 2013–2020. (d) Non-
mangrove areas projection for 2030 & 
2050 using the time period 2013–2020. 
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1988 in this study, this major project has been almost completed. Therefore, we deemed that this 
condition serves as a good baseline of information to envisage the changes in land use patterns in 
Palawan. But perhaps, the major framework for all development undertakings in Palawan was the 
passage of the Republic Act 7611 known as the SEP for Palawan Act in 1992. Within this law, the 
spatial basis for the implementation of its main goal is the Environmentally Critical Areas Network 
(ECAN) Zonation Project [96].

The strategic approach of ECAN is composed of three main components: terrestrial, coastal/
marine zones and tribal ancestral lands. The multiple utilisations of every resource within these 
components are defined according to different zones, particularly within the multiple/manipulative 
zone and buffer zone. The buffer zone is further divided into three distinct zones where the level of 
restriction in resources extraction differs. The buffer zone comprises restricted use area (i.e., where 
limited non-consumptive activities may be allowed as long as they will not impair the ecological 
balance), controlled use area (i.e., activities such as mining, logging, tourism development, research 
and other minor resources extraction may be allowed to operate but must be strictly in compliance 
with the law) and traditional use area (i.e., located along the edges of intact terrestrial forests where 
traditional use has already been established). The intensive utilisation of land use in Palawan is 
clearly defined under the multiple/manipulative use zone areas [97,98]. Due to the ECAN zoning 
strategy, multiple land-use areas in Palawan have been assessed, marked and delineated based on 
their biophysical or natural and anthropogenic attributes to regulate activities, sustain the ecological 
integrity and properly manage the carrying capacity [45].

Gilman et al. [30] and Polidoro et al. [99] asserted that the economic growth and the augmentation 
of the human population are two major factors that influence the changes in the extent of mangrove 
forests and other land use areas. In PPC specifically, where the greatest housing development 
projects in Palawan are generally concentrated, the conception of the city’s housing project in 
1992 had managed to transform different land use across its boundaries. For example, the multiple 
housing projects in Barangay Sicsican, Mangingisda, San Jose, San Manuel, Bahile, Tagburos, Sta. 
Cruz and Bahile, converted hundreds of hectares of collective land use areas into residential space. 
Although this number seems fairly alarming, the local government of PPC asserted that these 
initiatives could promote the smooth spatial expansion of the migration of mangroves in the future 
because most of the relocated local residents were previously living within the adjacent areas where 
mangroves are located [100].

Prior to the declaration of the protected area networks in Palawan, in 1981 and 1991, the mangrove 
areas in the province including the adjacent parcels of mangrove forests in the county were 
estimated at 74,267 ha [101]. Following the time after the integration of the SEP law in Palawan 
in 1992, the mangrove areas changed significantly [17] with at least 50,045 ha remaining areas 
in 1993 (Fig. 4). In contrast, a significant decrease of non-mangrove areas, which was notably 
recorded from this study from 1998 to 2018 (Fig. 5), coincides with the time periods where massive 
deforestation in the southern part of Palawan led to the reduction in the areal size of the forested 
areas during 2003–2010 [102]. Explicitly, we have found a significant increase in non-mangrove 
areas between 2013 and 2020, which was approximately 3 years after the implementation of 
the National Log Ban and the institutionalisation of an Anti-Illegal Logging Task Force in 2011. 
Interestingly, according to the report of DENR [103], among all the provinces in the Philippines, 
Palawan had the largest areal extent of forestland in 2020, totalling about 1,035,926 ha. We had 
identified that this study poses limitations against the generated results about the non-mangrove 
area class because we only referred to the generalisation of spectral separability. For this instance, 
we recommend that future similar studies should also focus on the spatial dynamics of multiple LU/
LC areas.

Based on a joint venture initiative by NAMRIA and JAFTA in 1992, an aerial survey was conducted 
in Palawan. Among the notably remotely sensed information they obtained was evidence of small-
scale logging activities, particularly in Taytay, and the slash and burn cultivation ‘Kaingin’ in the 
central boundary of PPC (e.g., Honday Bay, Ulugan Bay; Fig. 8b) and across the municipalities of 
San Vicente and Taytay [90]. PCSDS [96] further reported that a massive extraction of mangrove 
raw products for firewood consumption was rampant in Taytay. These anthropogenic stresses were 
assumed to cause changes in the land use/land cover areas in the northern part of the island during 
the pre- and post-establishment of a marine reserve within a small portion of the north-western tip 
of mainland Palawan (e.g., Bacuit Bay in El Nido municipality) in 1991.

However, following the expansion of the protected areas in northern Palawan (i.e., extension 
for 1991 – declared Bacuit Bay Marine Reserve) under the establishment of the El Nido-Taytay 
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Managed Resources Protected Area in 1998 [104], the results obtained from this study (i.e., Fig. 7c), 
suggests a the reason for an increasing trend in mangrove forest cover in Taytay. Correspondingly, 
an approximately 8.7% increase in old-growth forest coverage in the protected area of Bacuit Bay 
has been reported a year after it become fully protected under the law in 1991 [105]. Moreover, 
PCSDS [96] reported that two endemic mangrove species in the Philippines namely, Rhizophora 
stylosa and Compostenum philippinnensis, were abundant in the northern part of Palawan including 
Taytay. For this reason, we assume that the abundance of their presence in this region contributes 
to the successful protection and recovery of mangrove forests.

Richter et al. [91] recently reported that communities interviewed generally perceived mangrove 
condition in Palawan had improved over the last 10 years. They reported that the perception of the 
local communities in Taytay, in reference with the mangrove forest ecosystem quality in their area, 
suggested no change in condition compared with the findings from this study that showed a decrease 
in extent over the past 10 years, although it is apparent that the extent has increased significantly 
over the interviewee’s lifetime [91]. Similarly, they reported that the communities in Aborlan and PPC 
perceived an improvement in mangroves over the last 10 years [91]. This study indicates that, while 
there was a gain in mangrove extent between 2008 and 2013, since 2013 there has been slight 
decline in mangrove cover or cover has remained stable in these areas (Fig. 6, Table 3).

The discrepancy in these results could be attributed to the reputation of Palawan for having still 
relatively high mangrove forest cover in comparison with the other provinces in the Philippines. 
The positive outlook of the local communities may be influenced by the environmental regulatory 
conceptions where they think that the province has strict regulated forest activities as the entire 
mangrove forests in the study area are located within the existing protected area networks (i.e., 
IUCN, SEP Law, ECAN Zoning Project). Also, because local communities were actively involved 
in yearly ‘mangrove tree planting’ activities across Palawan, for example, the local government 
of PPC has already planted around 800,000 mangroves since 2003 [106], they presume that this 
type of activity is a good indicator of a successful mangrove management. However, there were 
still no local studies that investigate whether the different mangrove rehabilitation programmes in 
Palawan are successful or not. It is also likely that, as this study used lower-to-moderate resolution 
satellite data, the ability to detect young mangroves that are small and sparce (i.e., saplings) is low 
so these areas may not be included in the extent figures. The perceptions of interviewees may also 
indicate improvements in mangrove condition and health, rather than simply on extent of mangrove 
coverage, which is information harder to attain by remote sensing.

On the other hand, we presumed that a large percentage of change in non-mangrove areas in 
Palawan could be attributed to the progressive changes of other ground features in the region 
(e.g., deforestation, forest regeneration, infrastructure, industrial and residential developments). 
For example, in PPC alone, a large portion of the non-mangrove area in the outskirt region of 
Barangay Sta. Lourdes, which was previously a part of higher elevated grassland/bushland 
region, has been converted into a sanitary landfill. Also, we have noted that the projected changes 
in the non-mangrove area class might be attributed to the mining activities in the southern 
Palawan, particularly in the municipalities of Bataraza, Brooke’s Point, Aborlan and Narra. Another 
contributing element, which we assumed could have a large contribution to the changes in non-
mangrove areas in Palawan, was the inception of the Philippine government’s infrastructure-
growth-targeting programme known as ‘Build! Build! Build’, which was started in the last quarter 
of 2016. Major highways, roads and bridges have been expanded or re-constructed across the 
country, including in Palawan, which led to the conversion of other land use areas. We expected 
that this type of development will continue to transform landscape patterns in Palawan until the 
end-term of the current government administration. Lastly, an increase in non-mangrove areas for 
the years 2030 and 2050 was also expected due to the influence of tourism demand in Palawan. As 
the global Covid-19 pandemic starts to shift to an endemic approach, the tourism industry in the 
province is now gradually gaining momentum. For example, this situation spurred global interest to 
visit/revisit the region’s historical and popular tourism sites, which had been restricted for almost 
2 years due to the global outbreak of Covid-19.

The largest projection increment in mangrove aerial extents will be recorded in the next 30 years in 
2050. We expected this evaluation following the assumption where the current ‘Build! Build! Build!’ 
programme of the Philippine government could catch up with rapid urbanisation and population 
growth, which could potentially facilitate the optimisation of mangrove forests protection in the 
province. This is because we assumed that relocating the local residents living within the coastal 
areas could lessen the threat to the mangrove ecosystem and foster community growth.
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Conclusions
Our study demonstrates the capability of the Markov chain model in predicting the future 
expanse of mangrove forests in Palawan using the multi-date Landsat satellite images from 
1988 to 2020. This study found that in all study areas mangrove extent has increased from 1988 
levels, although the trajectories since 2008 are more variable. Our analysis has shown the high 
likelihood of an increase in areal extent of mangroves in Palawan, from our most recent estimate 
in 2020 (60,033.8 ha) up to the years 2030 (64,946.3 ha) and 2050 (66,972.1 ha). However, these 
projections should be considered a baseline and must be interpreted with caution, as this work did 
not integrate environmental factors that may or had influenced the changes in mangrove forests. 
For the moment, it would still be sensible to accept that mangrove forests are under constant 
threat especially in the context of global climate change. The impact mechanism of sea-level 
rise on mangroves continues to increase as the greenhouse gas emissions persist. Furthermore, 
other threats such as coastal conversion, water pollution and raw products extraction are not 
slowing down and continue to potentially impact the mangrove ecosystems worldwide. Integrating 
mangrove forest projection at the regional scale is vitally important to determine specific resiliency 
response to climate change impacts.

The potential of the Markov chain model to project the potential changes of mangrove forests and 
other land use areas conveys its importance in the future, especially in the contexts of landscape 
management, ecological sustainability and policy intervention. However, as we did not create 
this type of model to directly assess our current policies, we recommend that future research 
should integrate the cellular automata–Markov model as it provides land cover data needed at 
different time steps (i.e., pre- and post-policy intervention) (e.g., [42]). This way, research bodies 
can evaluate the impacts of different policies (e.g., 1992 SEP Law, 1981 Mangrove Swamp Forest 
Reserve) in the future state of mangroves in Palawan. Furthermore, it would be good to conduct a 
similar study but it should also focus on the assessment of different LU/LC patterns to determine 
whether the demand of development that spurs the decrease or increase of certain features 
of non-mangrove areas is beneficial to the environment or not. This approach might alleviate 
uncertainties about the state of other multiple land-use areas in Palawan, other than mangrove 
forest, and the potential changes can be dissected and utilised for more effective management 
applications.

It would also be necessary to investigate the pressures of different socio-economic activities of 
village communities on the extent of mangrove forests within the different multiple zones (i.e., 
based on the ECAN Zoning Project) as changes in the distribution and intensity of these activities 
in response to social and economic drivers have the potential to contribute to changes in LU/LC 
areas. Given all the other driving factors that could influence the changes of mangrove forest cover 
in Palawan, we further encourage the implementation of spatio-statistical modelling techniques in 
the future, where the changes in land-use areas are to be fitted with environmental covariates. We 
think that this type of approach is timely, relevant, cost-effective and could enable the evaluation of 
different management interventions and policies not only in Palawan but also in the Philippines and 
neighbouring Southeast Asian countries.

Funding
This study received funding from the Global Challenges Research Fund, Blue Communities, under the United Kingdom 
Research and Innovation, with grant agreement NE/P021107/1.

Acknowledgements
The authors express gratitude to the Global Challenges Research Fund, Blue Communities, under the United Kingdom Research 
and Innovation for the financial support. We also thank the National Mapping and Resource Information Authority for their 
provision of the ground reference data.

Authorship contribution
CBC conceptualised the study, collected and analysed the data, interpreted the results and wrote the manuscript; ES edited 
the manuscript and contributed to the results and discussion sections; PIM revised the manuscript, analysed the data and 
suggested to the improvement of data visualisation and in depth interpretation of the results; DC edited the manuscript; 
LAC edited the manuscript, supervised the acquisition of reference data, helped during the conceptualisation of the study and 
supervised the funding acquisition. All authors have read and approved the final manuscript.



23 / 29	 Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines	 UCL OPEN ENVIRONMENT 

	 https://doi.org/10.14324/111.444/ucloe.000057	

Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines

Open data and materials availability statement
The datasets generated during and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Declarations and conflicts of interest

Research ethics statement
Not applicable to this article.

Consent for publication statement
The authors declare that research participants’ informed consent to publication of findings – including photos, videos and any 
personal or identifiable information – was secured prior to publication.

Conflicts of interest statement
The authors declare no conflicts of interest with this work.

References
[1]	 Brown C, Corcoran E, Herkenrath P, Thonell J. Marine 

and Coastal Ecosystems and Human Well-Being: 
Synthesis [online]. Nairobi, Kenya: United Nations 
Environment Programme, Division of Early Warning 
Assessment; 2006 [Accessed 6 December 2021]. 
Available from: https://wedocs.unep.org/bitstream/
handle/20.500.11822/9461/Marine%20and%20
Coastal%0Ecosystems%20and%20Human%20
WellBeing_%20A%20synthesis%20report%20
based20on%20the%20findings%20of%20the%20
Millennium%20Ecosystems%20Assessment200652.
pdf?sequence=3&amp%3BisAllowed=.

[2]	 Mukherjee N, Sutherland WJ, Khan MNI, Berger 
U, Schmitz N, Dahdouh-Guebas F, et al. Using 
expert knowledge and modeling to define mangrove 
composition, functioning, and threats and estimate time 
frame for recovery. Ecol Evol. 2014;4:2247–62.

[3]	 Ball MC, Pidsley SM. Growth responses to salinity 
in relation to distribution of two mangrove species, 
Sonneratia alba and S. lanceolata, in northern Australia. 
Funct Ecol. 1995;9(1):77–85.

[4]	 Liang S, Zhou R, Dong S, Shi S. Adaptation to salinity 
in mangroves: implication on the evolution of salt-
tolerance. Chi Sci Bull. 2008;53(11):1708–15.

[5]	 Mendoza A, Alura D. Mangrove structure on the eastern 
coast of Samar Island, Philippines. In: Stott DE, Mohtar 
RH, Steinhard GC, editors. Sustaining the global 
farm. Selected Papers from the 10th International Soil 
Conservation Organization Meeting held May 24–29, 
1999 at Purdue University and the USDA-ARS National 
Soil Erosion Research Laboratory; 2001.

[6]	 Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland 
T, et al. Status and distribution of mangrove forests of 
the world using earth observation satellite data. Glob 
Ecol Biogeogr. 2011;20:154–9.

[7]	 Nagelkerken I, Roberts CM, van der Velde G, 
Dorenbosch M, van Riel MC, Cocheret de la Moriniere E, 
et al. How important are mangroves and seagrass beds 
for coral-reef fish? The nursery hypothesis tested on an 
island scale. Mar Ecol Prog Ser. 2002;244:299–305.

[8]	 Nagelkerken I, Blaber S, Bouillon S, Green P, Haywood 
M, Kirton LG, et al. The habitat function of mangroves 
for terrestrial and marina fauna: a review. Aqua Bot. 
2008;89(2):155–85.

[9]	 Honda K, Nakamura Y, Nakaoka M, Uy WH, Fortes 
MD. Habitat use by fishes in coral reefs, seagrass beds 

and mangrove habitats in the Philippines. PLoS One. 
2013;8(8):e65735.

[10]	 Camacho LD, Gevan﻿̃a DT, Carandang AP, Camacho SC, 
Combalicer EA, Rebugio LL, et al. Tree biomass and 
carbon stock of a community-managed mangrove forest 
in Bohol, Philippines. Forest Sci Technol. 2011;7(4):161–7.

[11]	 Sarhan M, Tawfik R. The economic valuation of 
mangrove forest ecosystem services: implications for 
protected area conservation. The George Wright Forum. 
2018;35(3):341–9.

[12]	 Dixon TG, Pulhin JM, Tapia MA. Chapter 13 – Fostering 
climate change mitigation through a community-based 
approach: carbon stock potential of community-
managed mangroves in the Philippines. Coastal 
Management. Global Challenges and Innovation. 
Philippines; 2019. p. 271–82.

[13]	 Kandasamy K, Bingham B. Biology of mangroves and 
mangrove ecosystems. Adv Mar Biol. 2001;40:81–251.

[14]	 Primavera JH, Sadaba RB, Lebata MJHL, Altamirano 
JP. Handbook of Mangroves in the Philippines – Panay. 
Tigbauan, Iloilo, Philippines [online]. Philippines: 
Southeast Asian Fisheries Development Center; 2004.

[15]	 Food and Agriculture Organization of the United Nations 
(FAO). Global Forest Resources Assessment Report 
2015: Country Report Philippines [online]. Rome: FAO; 
2022 [Accessed 20 January 2022]. Available from: 
https://www.fao.org/3/az306e/az306e.pdf.

[16]	 Myers N, Mittermeier RA, Mittermeier CG, Fonseca 
G, Kent JM. Biodiversity hotspots for conservation 
priorities. Nature. 2000;403:853–8.

[17]	 Palawan Council for Sustainable Development Staff 
(PCSDS). State of the Environment 2015 Updates, 
Province of Palawan, Philippines [online]. Puerto 
Princesa City: PCSD; 2015 [Accessed 1 February 
2022]. Available from: https://pcsd.gov.ph/wp-content/
uploads/2020/12/PCSDS-2015-Annual-Report.pdf.

[18]	 Long J, Giri C. Mapping the Philippines’ mangrove forests 
using Landsat imagery. Sensors. 2011;11:2972–81.

[19]	 Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist 
A, Simard M. Distribution and drivers of global 
mangrove forest change, 1996–2010. PLos One. 
2017;12:e0179302.

[20]	 Primavera JH. Development and conservation of the 
Philippine mangroves: institutional issues. Ecol Econ. 
2000;35(1):91–106.

https://wedocs.unep.org/bitstream/handle/20.500.11822/9461/Marine%20and%20Coastal%0Ecosystems%20and%20Human%20WellBeing_%20A%20synthesis%20report%20based20on%20the%20findings%20of%20the%20Millennium%20Ecosystems%20Assessment200652
https://wedocs.unep.org/bitstream/handle/20.500.11822/9461/Marine%20and%20Coastal%0Ecosystems%20and%20Human%20WellBeing_%20A%20synthesis%20report%20based20on%20the%20findings%20of%20the%20Millennium%20Ecosystems%20Assessment200652
https://wedocs.unep.org/bitstream/handle/20.500.11822/9461/Marine%20and%20Coastal%0Ecosystems%20and%20Human%20WellBeing_%20A%20synthesis%20report%20based20on%20the%20findings%20of%20the%20Millennium%20Ecosystems%20Assessment200652
https://wedocs.unep.org/bitstream/handle/20.500.11822/9461/Marine%20and%20Coastal%0Ecosystems%20and%20Human%20WellBeing_%20A%20synthesis%20report%20based20on%20the%20findings%20of%20the%20Millennium%20Ecosystems%20Assessment200652
https://wedocs.unep.org/bitstream/handle/20.500.11822/9461/Marine%20and%20Coastal%0Ecosystems%20and%20Human%20WellBeing_%20A%20synthesis%20report%20based20on%20the%20findings%20of%20the%20Millennium%20Ecosystems%20Assessment200652
https://wedocs.unep.org/bitstream/handle/20.500.11822/9461/Marine%20and%20Coastal%0Ecosystems%20and%20Human%20WellBeing_%20A%20synthesis%20report%20based20on%20the%20findings%20of%20the%20Millennium%20Ecosystems%20Assessment200652
https://www.fao.org/3/az306e/az306e.pdf
https://pcsd.gov.ph/wp-content/uploads/2020/12/PCSDS-2015-Annual-Report.pdf
https://pcsd.gov.ph/wp-content/uploads/2020/12/PCSDS-2015-Annual-Report.pdf


24 / 29	 Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines	 UCL OPEN ENVIRONMENT 

	 https://doi.org/10.14324/111.444/ucloe.000057	

Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines

[21]	 Dodd RS, Ong JE. Future of mangrove ecosystems to 
2025. In: Polunin NV, editor. Aquatic ecosystems: Trends 
and global prospects. New York: Cambridge University 
Press; 2008. p. 172–287.

[22]	 Department of Environment and Natural Resources 
(DENR). Sustaining our Coasts: The Ridge-to-Reef 
Approach – A Compilation of Technical and Policy 
Papers: Mangrove Management. Integrated Coastal 
Resources Management Project (ICRMP) of the 
Department of Environment and Natural Resources 
[online]. Philippines: DENR; 2013 [Accessed 15 
December 2021]. Available from: https://faspselib.
denr.gov.ph/sites/default/files//Publication%20Files/2.
MANGROVES_FINAL.pdf.

[23]	 Lucas RM, Ellison JC, Mitchell A, Donnelly B, Finlayson 
M, Milne AK. Use of stereo aerial photography for 
quantifying changes in the extent and height of 
mangroves in tropical Australia. Wetl Ecol Manag. 
2002;10(2):1510175.

[24]	 Komiyama A, Ong JE, Poungparn S. Allometry, biomass, 
and productivity of mangrove forests: a review. Aqua 
Bot. 2008;89:128–37.

[25]	 Suratman M. Remote sensing technology: recent 
advancements for mangrove ecosystems. In: Faridah-
Hanum I, Latiff A, Hakeem K, Ozturk M, editors. 
Mangrove ecosystems of Asia. New York: Springer; 2014.

[26]	 Long J, Napton D, Giri C, Graesser J. A mapping and 
monitoring assessment of the Philippines’ mangrove 
forest from 1990 to 2010. J Coast Res. 2014;30(2):260–71.

[27]	 Pagkalinawan HM, Ramos RV. Change detection of 
mangrove forest cover in the city of Puerto Princesa 
Palawan between 2003 and 2013 using Landsat 
imagery [online]. 2013 [Accessed 14 January 2022]. 
Available from: https://www.academia.edu/9733267/
CHANGE_DETECTION_OF_MANGROVE_FOREST_
COVER_IN_THE_CITY_OF_PUERTO_PRINCESA_
PALAWAN_BETWEEN_2003_AND_2013_USING_
LANDSAT_IMAGERY.

[28]	 Koh HL, Teh SY. Climate change mitigation and 
adaptation: role of mangroves in Southeast Asia. In: Leal 
Filho W, Azul AM, Brandli L, Özuyar PG, Wall T, editors. 
Climate action. Encyclopedia of the UN sustainable 
development goals. Cham: Springer; 2020.

[29]	 Food and Agriculture Organizations of the United 
Nations (FAO). Strategic Environmental Plan for Palawan 
Act (RA 7611) [online]. Rome: FAO; 2021 [Accessed 17 
December 2021]. Available from: https://www.fao.org/
faolex/results/details/en/c/LEX-FAOC019797.

[30]	 Gilman EL, Ellison J, Duke NC, Field C. Threats to 
mangroves from climate change and adaptation 
options: a review. Aquat Bot. 2008;89(2):237–50.

[31]	 Lillesand TM, Kiefer RW, Chipman JW. Remote sensing 
and image interpretation. 7th ed. New York: John Wiley & 
Sons Ltd.; 2015.

[32]	 Bolstad P, Lillesand TM. Rapid maximum likelihood 
classification. Photogramm Eng Remote Sens. 
1991;57:67–74.

[33]	 Benediktsson JA, Swain PH, Ersoy OK. Neural network 
approaches vs. statistical methods in classification of 
multisource remote sensing data. IEEE Trans Geosci 
Remote Sens. 1990;28(4):489–92.

[34]	 Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson B. Deep 
learning in remote sensing applications: a meta-analysis 
and review. ISPRS J Photogramm Remote Sens. 
2019;152:166–77.

[35]	 Almahasheer H, Aljowair A, Duarte CM, Irigoien X. 
Decadal stability of Red Sea mangroves. Estuar Coast 
Shelf Sci. 2016;169:164–72.

[36]	 Conopio M, Baloloy AB, Medina J, Blanck AC. Spatio-
temporal mapping and analysis of mangrove extents 

around Manila Bay using Landsat satellite imagery and 
Mangrove Vegetation Index (MVI). ISPRS Archives. 
2021;XLVI-4/W6-2021:103–8.

[37]	 Otsu N. A threshold selection method from gray-level 
histograms. IEEE Trans Systs Man Cybern. 1979;9(1): 
62–6.

[38]	 Gagniuc PA. Markov Chains: From Theory to 
Implementation and Experimentation [online]. 
2017 [Accessed 18 December 2021]. https://doi.
org/10.1002/9781119387596.

[39]	 Yang X. Markov Chain and its applications. MA thesis. 
Greencastle, IN: DePauw University; 2020 [Accessed 
18 December 2021]. https://doi.org/10.13140/
RG.2.2.12289.61287.

[40]	 Coppedge BR, Engle DM, Fuhlendorf SD. Markov 
models of land cover dynamics in a southern Great 
Plains grassland region. Landsc Ecol. 2007;22: 
1383–93.

[41]	 Kanjirappuzha R, Mukherjee CK, Vinu Chandran R, 
Prakash Mohan MM. Land-cover change dynamics 
and coastal aquaculture development: a case study 
in the East Godavari delta, Andhra Pradesh, India 
using multi-temporal satellite data. Int J Remote Sens. 
2010;31(16):4423–42.

[42]	 Adhikari S, Southworth J. Simulating forest cover 
changes of Bannerghatta National Park based on a 
CA-Markov model: a remote sensing approach. Remote 
Sens. 2012;4:3215–43.

[43]	 Adegbola PA, Adewumi JR, Obiora-Okeke OA. 
Application of Markov chain model and ArcGIS in land 
use projection of Ala river catchment, Akure, Nigeria. 
Niger J Technol Dev. 2021;18(1);1–9.

[44]	 Worthington T, Andradi-Brown D, Bhargava R, Buelow 
C, Bunting P, Duncan C, et al. Harnessing big data to 
support the conservation and rehabilitation of mangrove 
forests globally. One Earth. 2020;2:385–486.

[45]	 Palawan Council for Sustainable Development (PCSD). 
State of the Environment 2009 Updates, Province of 
Palawan, Philippines [online]. Puerto Princesa City: 
PCSD; 2010 [Accessed 15 January 2022]. Available 
from: https://www.pkp.pcsd.gov.ph/SOE/red%20
2010%20_%20State%20of%20Environment%20
Updates%202009,%20Palawan.pdf.

[46]	 Carandang AP, Camacho LD, Gevaña DT, Dizon JT, 
Camacho SC, de Luna CC, et al. Economic valuation 
for sustainable mangrove ecosystems management in 
Bohol and Palawan, Philippines. Forest Sci Technol. 
2013;9(3):118–25.

[47]	 Philippine Statistics Authority (PSA). Palawan QuickStat 
as of April 2009. Compiled by the Databank and 
Information Services Division [online]. Philippines: PSA; 
2009 [Accessed 15 January 2022]. Available from: 
https://psa.gov.ph/sites/default/files/attachments/ird/
quickstat/April_29.pdf.

[48]	 Sandalo RM, Baltazar T. The Palawan biosphere 
reserve. In: Working Papers, South–South Cooperation 
Programme on Environmentally Sound Socio-
economic Development in the Humid Tropics. No. 19. 
UNESCO; 1997. pp. 1–32 [Accessed 2 January 2022]. 
Available from: https://www.yumpu.com/en/document/
read/6017664/the-palawan-biosphere-reserve-
philippines-unesdoc-unesco.

[49]	 Naz AC. The State of the Philippine Environment: an 
Update on Chapter 4 of the 1994 Philippine Human 
Development Report. HDN Discussion Paper Series 
2012/2013, No. 10 [online]. Philippines: Human 
Development Network; 2013 [Accessed 15 January 
2022]. Available from: https://www.hdn.org.ph/wp-
content/uploads/DP_10_Naz.pdf.

[50]	 Ward RD, Friess DA, Day RH, MacKenzie RA. Impacts 
of climate change on mangrove ecosystems: a 

https://faspselib.denr.gov.ph/sites/default/files//Publication%20Files/2
https://faspselib.denr.gov.ph/sites/default/files//Publication%20Files/2
https://www.academia.edu/9733267/CHANGE_DETECTION_OF_MANGROVE_FOREST_COVER_IN_THE_CITY_OF_PUERTO_PRINCESA_PALAWAN_BETWEEN_2003_AND_2013_USING_LANDSAT_IMAGERY
https://www.academia.edu/9733267/CHANGE_DETECTION_OF_MANGROVE_FOREST_COVER_IN_THE_CITY_OF_PUERTO_PRINCESA_PALAWAN_BETWEEN_2003_AND_2013_USING_LANDSAT_IMAGERY
https://www.academia.edu/9733267/CHANGE_DETECTION_OF_MANGROVE_FOREST_COVER_IN_THE_CITY_OF_PUERTO_PRINCESA_PALAWAN_BETWEEN_2003_AND_2013_USING_LANDSAT_IMAGERY
https://www.academia.edu/9733267/CHANGE_DETECTION_OF_MANGROVE_FOREST_COVER_IN_THE_CITY_OF_PUERTO_PRINCESA_PALAWAN_BETWEEN_2003_AND_2013_USING_LANDSAT_IMAGERY
https://www.academia.edu/9733267/CHANGE_DETECTION_OF_MANGROVE_FOREST_COVER_IN_THE_CITY_OF_PUERTO_PRINCESA_PALAWAN_BETWEEN_2003_AND_2013_USING_LANDSAT_IMAGERY
https://www.fao.org/faolex/results/details/en/c/LEX-FAOC019797
https://www.fao.org/faolex/results/details/en/c/LEX-FAOC019797
https://doi.org/10.1002/9781119387596
https://doi.org/10.1002/9781119387596
https://doi.org/10.13140/RG.2.2.12289.61287
https://doi.org/10.13140/RG.2.2.12289.61287
https://www.pkp.pcsd.gov.ph/SOE/red%202010%20_%20State%20of%20Environment%20Updates%202009,%20Palawan
https://www.pkp.pcsd.gov.ph/SOE/red%202010%20_%20State%20of%20Environment%20Updates%202009,%20Palawan
https://www.pkp.pcsd.gov.ph/SOE/red%202010%20_%20State%20of%20Environment%20Updates%202009,%20Palawan
https://psa.gov.ph/sites/default/files/attachments/ird/quickstat/April_29.pdf
https://psa.gov.ph/sites/default/files/attachments/ird/quickstat/April_29.pdf
https://www.yumpu.com/en/document/read/6017664/the-palawan-biosphere-reserve-philippines-unesdoc-unesco
https://www.yumpu.com/en/document/read/6017664/the-palawan-biosphere-reserve-philippines-unesdoc-unesco
https://www.yumpu.com/en/document/read/6017664/the-palawan-biosphere-reserve-philippines-unesdoc-unesco
https://www.hdn.org.ph/wp-content/uploads/DP_10_Naz.pdf
https://www.hdn.org.ph/wp-content/uploads/DP_10_Naz.pdf


25 / 29	 Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines	 UCL OPEN ENVIRONMENT 

	 https://doi.org/10.14324/111.444/ucloe.000057	

Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines

region-by-region overview. Ecosyst Health Sust. 
2016;2(4):301211.

[51]	 Climate Change Commission (CCC). National Integrated 
Climate Change Database and Information Exchange 
System [online]. Philippines: CCC; 2021 [Accessed 25 
February 2022]. Available from: https://niccdies.climate.
gov.ph/files/documents/National%20Framework%20
Strategy%20on%20Climate%20Change%20-NFSCC-.
pdf.

[52]	 The Climate Reality Project. How is Climate Change 
Affecting the Philippines? Philippines: The Climate 
Project; 2016 [Accessed 20 January 2022]. Available 
from: https://www.climaterealityproject.org/blog/how-
climate-change-affecting-philippines.

[53]	 Gordon HR. Calibration requirements and methodology 
for remote sensors viewing the ocean in the visible. 
Remote Sens Environ. 1987;22(1):103–26.

[54]	 Lillesand TM, Kiefer RW. Remote sensing and image 
interpretation. 3rd ed. New York: John Wiley and Sons 
Ltd.; 1994.

[55]	 Bruce CM, Hilbert DW. Pre-processing Methodology 
for Application to Landsat TM/ETM+ Imagery of the 
Wet Tropics [online]. Cairns, Australia: Rainforest CRC; 
2006 [Accessed 20 December 2021]. Available from: 
https://rainforest-crc.jcu.edu.au/publications/landsat_
preprocessing.pdf.

[56]	 Young NE, Anderson RS, Chignell SM, Vorster AG, 
Lawrence R, Evangelista PH. A survival guide to 
Landsat preprocessing. Ecology. 2017;98(4):920–32.

[57]	 Dai X. The effects of image misregistration on the 
accuracy of remotely sensed change detection. IEEE 
Trans Geosci Remote Sens. 1998;36(5):1566–77.

[58]	 Schroeder TA, Cohen WB, Song C, Canty MJ, Yang Z. 
Radiometric correction of multi-temporal Landsat data 
for characterization of early successional forest patterns 
in western Oregon. Remote Sens Envir. 2006;103: 
16–26.

[59]	 United States Geological Survey (USGS). Landsat 7 (L7) 
Data Users Handbook. LSDS-1927 Version 2.0 [online]. 
Sioux Falls, South Dakota: EROS; 2019 [Accessed 16 
December 2021]. Available from: https://prd-wret.s3.us-
west-2.amazonaws.com/assets/palladium/production/
atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.
pdf.

[60]	 Chavez PS, Jr. An improved dark-object subtraction 
technique for atmospheric scattering correction of 
multispectral data. Remote Sens Environ. 1998;24: 
459–79.

[61]	 Song C, Woodcock CE, Seto KC, Lenney MP, Scott 
AM. Classification and change detection using landsat 
TM data: when and how to correct atmospheric 
effects? Remote Sens Environ. 2001;75(2):230–44.

[62]	 Richards J, editor. Remote sensing digital image analysis: 
An introduction. 5th ed. New York: Springer; 2013.

[63]	 Jensen JR, editor. Introductory digital image processing – 
A remote sensing perspective. 2nd ed. Englewood Cliffs, 
Upper Saddle River, NJ: Prentice Hall; 1996.

[64]	 Mausel PW, Kramber WJ, Lee JK. Optimum band 
selection for supervised classification of multispectral 
data. Photogramm Eng Remote Sens. 1990;56(1):55–60.

[65]	 Chen C-F, Son N-T, Chang N-B, Chen C-R, Chang L-Y, 
Valdez M, et al. Multi-decadal mangrove forest change 
detection and prediction in Honduras, Central America, 
with Landsat imagery and a Markov chain model. 
Remote Sens. 2013;5(12):6408–26.

[66]	 Bhattacharyya A. On a measure of divergence 
between two statistical populations defined by their 
probability distributions. New Bull Calcutta Math Soc. 
1943;35:99–109.

[67]	 Kailath T. The Divergence and Bhattacharyya measures 
in signal selection. IEEE Trans Commun. 1967;15:52–60.

[68]	 Bruzzone LF, Roli SB, Serpico. An extension to 
multiclass cases of the Jeffries–Matusita distance. IEEE 
Trans Geosci Remote Sens. 1995;33(6):1318–21.

[69]	 Ghoggali N, Melgani F. Automatic ground-truth 
validation with genetic algorithms for multispectral 
image classification. IEEE Trans Geosci Remote Sens. 
2009;47(7):2172–81.

[70]	 Richards JA, Jia X, editors. Remote sensing digital image 
analysis. Berlin Heidelberg: Springer-Verlag; 1999.

[71]	 Zhu Z, Woodcock CE. Object-based cloud and cloud 
shadow detection in Landsat imagery. Remote Sens 
Environ. 2012;118(15):83–94.

[72]	 Li J, Roy D. A global analysis of sentinel-2A, sentinel-2B 
and landsat-8 data revisit intervals and implications for 
terrestrial monitoring. Remote Sens. 2017;9(9):902.

[73]	 Zhu Z, Wang S, Woodcock CE. Improvement and 
expansion of the Fmask algorithm: cloud, cloud shadow, 
and snow detection for Landsat 2015 check title and 
Sentinel images. Remote Sens Environ. 2015;159:269–77.

[74]	 Mountrakis G, Im J, Ogole C. Support vector machines 
in remote sensing: a review. ISPRS J Photogramm 
Remote Sens. 2010;66(3):247–59.

[75]	 Campomanes F, Pada AV, Silapan J. Mangrove 
classification using support vector machines and random 
forest algorithm: a comparative study. In: GEOBIA 
2016: Solutions and Synergies, 14–16 September 2016, 
University of Twente Faculty of Geo-Information and 
Earth Observation. Enschede: Netherlands; 2016.

[76]	 Talukdar S, Singha P, Mahato S, Shahfahad Pal S, Liou 
Y-A, Rahman A. Land-use land-cover classification by 
machine learning classifiers for satellite observations – a 
review. Remote Sens. 2020;12(7):1135.

[77]	 Press WH, Teukolsky SA, Vetterling WT, Flannery BP, 
editors. Numerical recipes: The art of scientific 
computing. 3rd ed. Cambridge: Cambridge University 
Press; 2007.

[78]	 Huang C, Davis LS, Townshed JRG. An assessment of 
support vector machines for land cover classification. 
Int J Remote Sens. 2002;23(4):725–49.

[79]	 Buitre MJC, Zhang H, Lin H. The mangrove forests 
change and impacts from tropical cyclones in the 
Philippines using time series satellite imagery. Remote 
Sens. 2019;11:688.

[80]	 Liu M, Zhang H, Lin G, Lin H, Tang D. Zonation and 
directional dynamics of mangrove forests derived from 
time-series satellite imagery in Mai Po, Hong Kong. 
Sust. 2008;10(6):1913.

[81]	 Congalton RG. A review of assessing the accuracy of 
classifications of remotely sensed data. Remote Sens 
Environ. 1991;37(1):35–46.

[82]	 Weng QH, editor. Remote sensing and GIS integration: 
Theories, Methods, and Applications. New York: 
McGraw-Hill; 2010.

[83]	 Serfozo R. Markov Chain. In Basics of Applied 
stochastic processes. Probability and its application. 
Springer Science & Business Media, 2009:1–443.

[84]	 Aitkenhead MJ, Aalders IH. Predicting land cover using 
GIS, Bayesian and evolutionary algorithm methods. J 
Environ Manage. 2009;90(1):236–50.

[85]	 Abdulrahman AI, Ameen SA. Predicting Land use and 
land cover spatiotemporal changes utilizing CA-Markov 
model in Duhok district between 1999 and 2033. Acad J 
Nawroz U. 2020;9(4):71–80.

[86]	 Mukhopadhyay A, Mondal P, Barik J, Chowdhury 
SM, Ghosh T, Hazra S. Changes in mangrove species 

https://niccdies.climate.gov.ph/files/documents/National%20Framework%20Strategy%20on%20Climate%20Change%20-NFSCC-
https://niccdies.climate.gov.ph/files/documents/National%20Framework%20Strategy%20on%20Climate%20Change%20-NFSCC-
https://niccdies.climate.gov.ph/files/documents/National%20Framework%20Strategy%20on%20Climate%20Change%20-NFSCC-
https://www.climaterealityproject.org/blog/how-climate-change-affecting-philippines
https://www.climaterealityproject.org/blog/how-climate-change-affecting-philippines
https://rainforest-crc.jcu.edu.au/publications/landsat_preprocessing.pdf
https://rainforest-crc.jcu.edu.au/publications/landsat_preprocessing.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf


26 / 29	 Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines	 UCL OPEN ENVIRONMENT 

	 https://doi.org/10.14324/111.444/ucloe.000057	

Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines

assemblages and future prediction of the Bangladesh 
Sundarbans using Markov chain model and cellular 
automata. Environ Sci Process Impacts. 2015;17:1111.

[87]	 Kumar S, Radhakrishnan N, Mathew S. Land use 
change modelling using a Markov model and remote 
sensing. Geomat Nat Haz Risk. 2014;5(2):145–56.

[88]	 Omar NQ. Modelling land-use and land-cover 
changes using Markov-CA, and multiple decision 
making in Kirkuk City. Int J Sci Res Environ Sci. 
2014;2(1):29–42.

[89]	 Songcuan AJG, Baloloy AB, Blanco AC, David LT, 
Go GA, Cadalzo IE, et al. Mangrove Forest Extent 
Mapping in Southwestern Luzon Using Landsay 
Imagery. Technical Presentations [online]. 2015 
[Accessed 10 December 2021]. Available from: https://
mangroveecology.files.wordpress.com/2017/04/3-2-
mangrove-forest-extent-mapping-in-southwestern-
luzon-using-2015-landsat-imagery.pdf.

[90]	 Department of Environment and Natural Resources-
National Mapping and Resource Authority, and Japan 
Forest Technology Association (DENR-NAMRIA and 
JAFTA). Land Cover Statistics 1993–2000: Palawan 
Forest Cover Map [online]. Philippines: DENR-JAFTA; 
1992–2000 [Accessed 16 December 2021]; Available 
from: https://openjicareport.jica.go.jp/pdf/11353935_02.
pdf.

[91]	 Richter I, Roberts BR, Sailley SF, Sullivan E, Cheung 
VV, Eales J, et al. Building bridges between natural and 
social science disciplines: a standardized methodology 
to combine data on ecosystem quality trends. Phil Trans 
R Soc. 2022;377:20210487.

[92]	 Bunting P, Rosenqvist A, Lucas RM, Revelo L-M, 
Hilarides L, Thomas N, et al. The global mangrove 
watch-a new 2010 global baseline of mangrove extent. 
Remote Sens [online]. 2018;10(10):1669.

[93]	 Venturillo R. Spatio-temporal mapping, biomass, and 
carbon stock assessment of mangrove forest in Aborlan, 
Palawan, Philippines. JNS. 2016;15(2):90–103.

[94]	 Jansen L. A remote-sensing based assessment 
of ecosystem services for Palawan, The 
Philippines. Netherlands: MA thesis, Wageningen 
University; 2017.

[95]	 Baylon MCO, Franco RCC, Perez MAB. An economic 
analysis of the integrated area development approach 
as an alternative to rural development: a case study of 
the Palawan integrated area development project phase 
1 (1982–90). DLSU (B&E). 1993;5(1).

[96]	 Palawan Council for Sustainable Development Staff 
(PCSDS). Palawan Council for Sustainable Development 
Staff Accomplishment Report CY 2005 [online]. Puerto 
Princesa City: PCSD; 2005 [Accessed 15 January 
2022]. Available from: https://pcsd.gov.ph/pcsd-2005-
accomplishment-report/.

[97]	 Palawan Council for Sustainable Development Staff 
(PCSDS). Mainstreaming the Environmentally Critical 
Areas Network (ECAN) into the Local Land Use Planning 
System of the Local Government Units (LGU): Framework 
and Methods [online]. Puerto Princesa City, Phillipines: 
PCSD; 2015 [Accessed 15 January 2022]. Available from: 
https://pkp.pcsd.gov.ph/images/Mainstreaming%20
ECAN%20into%20Comprehensive%20Land%20
and%20Water%20Use%20Plan.pdf.

[98]	 Aguilla CPA, Gapay IG, Nonato QIC, Simpao ADP, 
Tirol RPC. Municipality of El Nido ECAN Resource 
Management Plan 2015–2020 [online]. 2020 [Accessed 
5 January 2022]. Available from: https://pcsd.gov.ph/
wp-content/uploads/2020/12/3-Municipality-of-El-
NidoECAN-Resource-Management-Plan-2015-2020.pdf.

[99]	 Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison 
AM, Ellison JC, et al. The loss of species: mangrove 
extinction risk and geographic areas of global concern. 
PLoS One. 2010;5(4):e10095.

[100]	 Puerto Princesa City Government. Comprehensive 
Housing Program [online]. Puerto Princesa City, 
Philippines: PPCG; 2012 [Accessed 8 January 
2022]. Available from: https://puertoprincesa.
ph/?q=government/city-mayors-initiatives/
comprehensive-housing-program.

[101]	 Melana DM, Melana EE, Mapalo AM. Mangrove 
Management and Development in the Philippines – 
Report of the Regional Technical Consultation for the 
Development of Code of Practice for Responsible 
Aquaculture in Mangrove Ecosystems [online]. 
Philippines: Southeast Asian Fisheries Development 
Center; 2000 [Accessed 20 January 2022]. Available 
from: https://repository.seafdec.org.ph/bitstream/
handle/10862/712/RTCCode_p39-47.pdf.

[102]	 Wealth Accounting and the Valuation of Ecosystem 
Services (WAVES). Pilot Ecosystem Account for Southern 
Palawan. Final report of the Technical Working Group 
for Southern Palawan ecosystem accounting [online]. 
Philippines: WAVES; 2016 [Accessed 29 February 2022]. 
Available from: https://www.wavespartnership.org/sites/
waves/files/kc/WB_Southern%20Palawan%20Tech%20
Report_FINAL_Nov%202016.pdf.

[103]	 Department of Environmental and Natural Resources 
(DENR). 2011 Philippine Forestry Statistics [online]. 
DENR, Philippines: Forest Management Bureau; 2011 
[Accessed 14 December 2021]. Available from: https://
forestry.denr.gov.ph/images/contents/pdfs/PFS2011.pdf.

[104]	 National Integrated Protected Areas Programme 
(NIPAP). A Special Project of the Department of the 
Department of Environment and Natural Resources 
supported with a grant from the European Union 
(B7-504 I/93/20), Final Report [online]. Philippines: 
NIPAP; 2001 [Accessed 4 March 2022]. Available 
from: https://faspselib.denr.gov.ph/sites/default/files//
Publication%20Files/Technical%20Report_0.pdf.

[105]	 Japan International Cooperation Agency (JICA). 
The Study on Environmentally Sustainable Tourism 
Development Plan for Northern Palawan in the 
Republic of the Philippines. Supplemental Report 
No. 2, Terrestrial Environment of Northern Palawan 
[online]. Philippines; 1997 [Accessed 10 January 
2021]. Available from: https://openjicareport.jica.go.jp/
pdf/11374626_01.pdf.

[106]	 City Tourism Department of Puerto Princesa. Love Affair 
with Nature [online]. Puerto Princesa City, Philippines: 
CTDPP; 2015 [Accessed 18 December 2021]. Available 
from: https://tourism.puertoprincesa.ph/?q=events/love-
affair-nature.

[107]	Congalton RG. A review of assessing the accuracy of 
classifications of remotely sensed data. Remote Sens 
Environ. 1991;37(1):35–46.

[108]	Kanjirappuzha R, Mukherjee CK, Vinu Chandran R, 
Prakash Mohan MM. Land-cover change dynamics 
and coastal aquaculture development: a case study 
in the East Godavari delta, Andhra Pradesh, India 
using multi-temporal satellite data. Int J Remote Sens. 
2010;31(16):4423–42.

[109]	Murugesan S, Zhang J, Vittal V. Finite state Markov 
chain model for wind generation forecast: a data-driven 
spatiotemporal approach. IEEE PES Innovative Smart 
Grid Technologies (ISGT); 2012. https://doi.org/10.1109/
ISGT.2012.6175764.

[110]	 Kumar S, Radhakrishnan N, Mathew S. Land use 
change modelling using a Markov model and remote 
sensing. Geomat Nat Haz Risk. 2014;5(2):145–56.

[111]	United States Geological Survey (USGS). Landsat 7 (L7) 
Data Users Handbook. LSDS-1927 Version 2.0 [online]. 
Sioux Falls, South Dakota: EROS; 2019 [Accessed 16 
December 2021]. Available from: https://prd-wret.s3.us-
west-2.amazonaws.com/assets/palladium/production/
atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.
pdf.

Extra information 
 
UCL Open: Environment is an open 
scholarship publication, all previous 
versions and open peer review 
reports can be found online in the 
UCL Open: Environment Preprint 
server at ucl.scienceopen.com

https://mangroveecology.files.wordpress.com/2017/04/3-2-mangrove-forest-extent-mapping-in-southwestern-luzon-using-2015-landsat-imagery.pdf
https://mangroveecology.files.wordpress.com/2017/04/3-2-mangrove-forest-extent-mapping-in-southwestern-luzon-using-2015-landsat-imagery.pdf
https://mangroveecology.files.wordpress.com/2017/04/3-2-mangrove-forest-extent-mapping-in-southwestern-luzon-using-2015-landsat-imagery.pdf
https://mangroveecology.files.wordpress.com/2017/04/3-2-mangrove-forest-extent-mapping-in-southwestern-luzon-using-2015-landsat-imagery.pdf
https://openjicareport.jica.go.jp/pdf/11353935_02.pdf
https://openjicareport.jica.go.jp/pdf/11353935_02.pdf
https://pcsd.gov.ph/pcsd-2005-accomplishment-report/
https://pcsd.gov.ph/pcsd-2005-accomplishment-report/
https://pkp.pcsd.gov.ph/images/Mainstreaming%20ECAN%20into%20Comprehensive%20Land%20and%20Water%20Use%20Plan
https://pkp.pcsd.gov.ph/images/Mainstreaming%20ECAN%20into%20Comprehensive%20Land%20and%20Water%20Use%20Plan
https://pkp.pcsd.gov.ph/images/Mainstreaming%20ECAN%20into%20Comprehensive%20Land%20and%20Water%20Use%20Plan
https://pcsd.gov.ph/wp-content/uploads/2020/12/3-Municipality-of-El-NidoECAN-Resource-Management-Plan-2015-2020.pdf
https://pcsd.gov.ph/wp-content/uploads/2020/12/3-Municipality-of-El-NidoECAN-Resource-Management-Plan-2015-2020.pdf
https://pcsd.gov.ph/wp-content/uploads/2020/12/3-Municipality-of-El-NidoECAN-Resource-Management-Plan-2015-2020.pdf
https://puertoprincesa.ph/?q=government/city-mayors-initiatives/comprehensive-housing-program
https://puertoprincesa.ph/?q=government/city-mayors-initiatives/comprehensive-housing-program
https://puertoprincesa.ph/?q=government/city-mayors-initiatives/comprehensive-housing-program
https://repository.seafdec.org.ph/bitstream/handle/10862/712/RTCCode_p39-47.pdf
https://repository.seafdec.org.ph/bitstream/handle/10862/712/RTCCode_p39-47.pdf
https://www.wavespartnership.org/sites/waves/files/kc/WB_Southern%20Palawan%20Tech%20Report_FINAL_Nov%202016
https://www.wavespartnership.org/sites/waves/files/kc/WB_Southern%20Palawan%20Tech%20Report_FINAL_Nov%202016
https://www.wavespartnership.org/sites/waves/files/kc/WB_Southern%20Palawan%20Tech%20Report_FINAL_Nov%202016
https://forestry.denr.gov.ph/images/contents/pdfs/PFS2011.pdf
https://forestry.denr.gov.ph/images/contents/pdfs/PFS2011.pdf
https://faspselib.denr.gov.ph/sites/default/files//Publication%20Files/Technical%20Report_0
https://faspselib.denr.gov.ph/sites/default/files//Publication%20Files/Technical%20Report_0
https://openjicareport.jica.go.jp/pdf/11374626_01.pdf
https://openjicareport.jica.go.jp/pdf/11374626_01.pdf
https://tourism.puertoprincesa.ph/?q=events/love-affair-nature
https://tourism.puertoprincesa.ph/?q=events/love-affair-nature
https://doi.org/10.1109/ISGT.2012.6175764
https://doi.org/10.1109/ISGT.2012.6175764
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS1927_L7_Data_Users_Handbook-v2.pdf


27 / 29	 Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines	 UCL OPEN ENVIRONMENT 

	 https://doi.org/10.14324/111.444/ucloe.000057	

Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines

Appendix

Appendix A

Landsat sensors used

The multi-temporal resolution and multi-spectral Landsat 4–5 Thematic Mapper (TM), Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) sensors 
were utilised for this study. The different ranges of frequencies along with the electromagnetic (EM) 
spectrum for TM, ETM+ and OLI are summarised in Table A1.

Sourced dataset

The TM, ETM+ and OLI datasets in multiple years 1988, 1993, 1998, 2003, 2008, 2013, 2018 and 
2020 were sourced using the Semi-Automatic Classification Plugin (SCP) version 7.9.0 Matera in 
Quantum Geographical Information System (QGIS) version 3.22.1 Białowieża (Table A2).

Accuracy assessment

Using the 2010 LU/LC NAMRIA map as our ground reference data, the mangrove classification 
accuracies for years 1988, 1993, 1998, 2003, 2008, 2013, 2018 and 2020 were generated (Fig. A1). 
The training mangrove forest polygons were validated through the established testing samples 
and the accuracy was assessed using the producer’s accuracy, the user’s accuracy, the overall 
accuracy and the kappa coefficient values [107].

Mangrove forests projection and model’s accuracy

Based on the calculation of the transition probabilities of one system at time t2 with the state of the 
system at time t1 according to the specific year [108–110], the Markov’s transition probability matrix 
was generated for the two time periods, 1988–1993 and 2013–2020 (Table A3).

Table A1. Summary of band designations and spatial resolution for TM, ETM+ and OLI [111]

Sensor   Landsat 4–5 TM   Landsat 7 ETM+   Landsat 8 OLI   Spatial resolution

Coastal aerosol  –   –   B1 (0.43–0.45)   30 m

Blue   B1 (0.45–0.52)   B1 (0.45–0.52)   B2 (0.45–0.51)   30 m

Green   B2 (0.52–0.60)   B2 (0.52–0.60)   B3 (0.53–0.59)   30 m

Red   B3 (0.63–0.69)   B3 (0.63–0.69)   B4 (0.64–0.67)   30 m

NIR   B4 (0.76–0.90)   B4 (0.77–0.90)   B5 (0.85–0.88)   30 m

SWIR 1   B5 (1.55–1.75)   B5 (1.55–1.75)   B6 (1.57–1.65)   30 m

SWIR 2   B7 (2.08–2.35)   B7 (2.09–2.35)   B7 (2.11–2.29)   30 m

Thermal  
 

B6 (10.40–12.50)  B6 (10.40–12.50)  B10 (10.60–11.19)  30 m

–   –   B11 (11.50–12.51)  –

Pan-chromatic   –   B8 (0.52–0.90)   B8 (0.50–0.68)   15 m

Cirrus   –   –   B9 (1.36–1.38)   30 m

The empty cells correspond to the unavailability of the sensor for a particular feature. ‘B’ represents the band 
number and the corresponding wavelength range, enclosed in a parenthesis, and in a micrometre unit.
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Table A2. Details of acquired Landsat satellite data selected for this study

Satellite sensor  Acquisition date (mm/dd/yy)  SRes (m)   WRS P/R   Satellite sensor  Acquisition date (mm/dd/yy)  SRes (m)   WRS P/R

TM   03/12/1988   30   115/053   ETM+   01/14/2003   30, 15   118/054

TM   01/31/1988   30   116/052   ETM+   01/23/2008   30, 15   115/053

TM   04/20/1988   30   116/053   ETM+   04/19/2008   30, 15   116/052

TM   06/30/1988   30   117/053   ETM+   10/12/2008   30, 15   116/053

TM   09/18/1988   30   117/054   ETM+   04/10/2008   30, 15   117/053

TM   01/29/1988   30   118/054   ETM+   10/03/2008   30, 15   117/054

TM   11/05/1993   30   115/053   ETM+   04/01/2008   30, 15   118/054

TM   12/14/1993   30   116/052   ETM+   10/19/2013   30, 15   115/053

TM   05/20/1993   30   116/053   ETM+   02/28/2013   30, 15   116/052

TM   10/27/1993   30   116/053   ETM+   05/19/2013   30, 15   116/053

TM   07/14/1993   30   117/053   ETM+   03/07/2013   30, 15   117/053

TM   06/12/1993   30   117/054   ETM+   06/27/2013   30, 15   117/054

TM   03/15/1993   30   118/054   ETM+   05/01/2013   30, 15   118/054

TM   11/10/1993   30   118/054   OLI   12/12/2013   30, 15   115/053

TM   01/03/1998   30   115/053   OLI   08/29/2018   30, 15   116/052

TM   03/31/1998   30   116/052   OLI   02/18/2018   30, 15   116/053

TM   03/31/1998   30   116/053   OLI   04/30/2018   30, 15   117/053

TM   01/17/1998   30   117/053   OLI   12/10/2018   30, 15   117/054

TM   01/17/1998   30   117/054   OLI   04/05/2018   30, 15   118/054

TM   02/09/1998   30   118/054   OLI   04/05/2020   30, 15   115/053

ETM+   04/15/2003   30, 15   115/053   OLI   09/19/2020   30, 15   116/052

ETM+   02/17/2003   30, 15   116/052   OLI   09/19/2020   30, 15   116/053

ETM+   02/01/2003   30, 15   116/053   OLI   08/25/2020   30, 15   117/053

ETM+   03/12/2003   30, 15   117/053   OLI   08/25/2020   30, 15   117/054

ETM+   04/13/2003   30, 15   117/054   OLI   05/12/2020   30, 15   118/054

For satellite sensors, the multi-spectral Landsat 4–5 is denoted by ‘TM’, the Landsat 7 Enhanced Thematic Mapper Plus is denoted by ‘ETM+’ and 
‘OLI’ stands for Landsat 8 Operational Land Imager. The spatial resolution for each satellite image is denoted by ‘SRes’. ‘WRS’ means worldwide refer-
ence system, indicated in path ‘P’ and row ‘R’.
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Table A3. Calculated transitional probabilities during 1988–2020

Time period   Probability matrix   Mangrove forests  Non-mangrove areas

1988–1993   Mangrove forests   0.531   0.469

  Non-mangrove areas   0.401   0.599

2013–2020   Mangrove forests   0.548   0.452

  Non-mangrove areas   0.633   0.367
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Figure A1

Classification error matrix of the Landsat 
TM, ETM+ and OLI data for multiple 
years, 1988, 1993, 1998, 2003, 2008, 
2013, 2018 and 2020. The ground 
reference data used was the 2010 map 
derived from NAMRIA. The mangrove 
forests class is donated by ‘MF’ while the 
class of non-mangrove areas is denoted 
by ‘NMA’. Additionally, the measure 
of commission error (type 1 error) is 
denoted by ‘CE’ while the omission 
error (type 2 error) is denoted by ‘OE’, 
respectively. 


