iz CMI

REVIEW ARTICLE

www.nature.com/cmi

W) Check for updates

SARS-CoV-2 immunity in animal models
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The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a
worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to
significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress,
fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial
tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and
vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs),
ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and
applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an
overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding
immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from
different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with
the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and
clinical investigations, underscoring lingering scientific questions that demand further clarification.
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INTRODUCTION

Starting at the end of 2019, the SARS-CoV-2 outbreak first spread
in China [1] and then rapidly spread globally, causing a dreadful
global pandemic. As of November 30, 2023 [2], SARS-CoV-2 has
cumulatively resulted in 772,052,752 confirmed cases and
6,985,278 deaths. In addition to the cases reported by the World
Health Organization (WHO), there are still a large number of
unconfirmed cases of asymptomatic or mild SARS-CoV-2 infection;
therefore, in the real world, the infection rate of SARS-CoV-2 could
be much greater than that of other viruses [3]. Although
widespread vaccination has made SARS-CoV-2 infection clinically
less deadly [4], conducting additional detailed research on this
topic is still highly meaningful and will help researchers gain
experience for the next pandemic involving other viruses.

To date, a total of seven coronaviruses capable of infecting
humans have been identified, including the three highly
pathogenic coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2
and the four mildly pathogenic coronaviruses HKU1-CoV, 229E-
CoV, NL63-CoV, and OC43-CoV [5]. Among them, the three highly
pathogenic coronaviruses were successively discovered in the 21st
century [6, 7]. SARS-CoV-2 is a single-stranded positive-sense RNA

virus that is a beta coronavirus [5], as are SARS-CoV and MERS-CoV.
The genome sequence of SARS-CoV-2 shares 79% similarity with
that of SARS-CoV and 50% similarity with that of MERS-CoV [8].
Like SARS-CoV, SARS-CoV-2 can encode four structural proteins,
namely, the spike protein, the nucleocapsid protein, the mem-
brane protein, and the envelope protein, with the spike protein
mainly mediating the virus's binding to its cellular receptor
(angiotensin-converting enzyme 2 (ACE2)) and the process of viral
entry into cells [5]. During the pandemic, SARS-CoV-2 has
continued to mutate, giving rise to alpha, beta, delta, and omicron
variants [9]. Starting from the alpha variant, the spike protein of
SARS-CoV-2 acquired the N501Y mutation, leading to increased
affinity for ACE2 in mice, thereby enabling direct infection [5].
Subsequently, the N501Y mutation has been found in the beta,
delta, and omicron variants [10, 11].

Animal models are vital for studying pathogenic mechanisms,
the induction of immune response, immune escape mechanisms,
antiviral drugs, and vaccines against SARS-CoV-2. In-depth
research on SARS-CoV-2 requires appropriate animal models.
Therefore, in this review, we primarily summarize the current
progress in animal models of SARS-CoV-2 infection, evaluate the
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utility of different models in various research directions, summar-
ize the shortcomings of current animal models, and provide
suggestions for the development of future animal models.

CLINICAL FEATURES OF COVID-19

General clinical symptoms of patients

Pneumonia is the most characteristic clinical manifestation of
SARS-CoV-2 infection [12, 13]. In addition to pneumonia, COVID-19
can cause a wide spectrum of other clinical symptoms, including
conjunctival congestion, nasal congestion, headache, cough, sore
throat, sputum production, fatigue, hemoptysis, shortness of
breath, nausea or vomiting, diarrhea, myalgia or arthralgia, and
chills [1]. During the first wave of the SARS-CoV-2 pandemic in
China, several single-center studies and multicenter studies
reported that nearly 90% of COVID-19 patients developed fever,
and more than 50% of them developed cough, while a small
proportion of them developed nausea or vomiting and diarrhea
[1, 13]. However, increasing evidence has highlighted the
prevalence of asymptomatic infections [14, 15], which account
for approximately 40-45% of SARS-CoV-2 infections [16-18].

Susceptible populations and risk factors

While susceptibility to SARS-CoV-2 is universal, its impact varies
significantly among different populations, with certain popula-
tions being more predisposed to infection or experiencing more
severe manifestations of the illness [19].

The COVID-19 mortality rate is higher in males than in females
[1, 20-22]. This difference may be attributed to the apparent
stronger innate and adaptive immune responses in females than
in males, both in terms of infection and vaccine response [23], as
well as multiple other factors, such as sex hormones, genetic
factors, social behavioral differences, and comorbidities [24-26].

Age is also an important factor in SARS-CoV-2 infection.
Numerous studies have shown that age is an independent risk
factor for COVID-19-related mortality [22, 27-29]. Recent research
has shown that cellular senescence plays a critical role in
regulating cellular changes associated with aging and is a key
factor in the excessive inflammation caused by SARS-CoV-2, as the
virus triggers and exacerbates the senescence-associated secre-
tory phenotype (SASP), leading to a “cytokine storm” and tissue
damage in older individuals [30, 31].

Pregnancy has been reported to be associated with increased
disease severity in SARS-CoV-2-infected individuals [32, 33]. The
placental inflammation induced by SARS-CoV-2 may account for
the increased fetal mortality rather than direct fetal infection
[34-38]. At present, whether SARS-CoV-2 has the potential for
vertical transmission is not clear. Based on the current data,
vertical transmission is not common [39], and further research
through animal experiments may be necessary.

The impact of comorbidities on COVID-19 outcomes has been
acknowledged since the early stages of the pandemic [1].
According to a cohort study, hypertension (34.3%) was the most
prevalent comorbidity, followed by asthma (15.9%) and diabetes
(9.9%). Obesity [40] and type 2 diabetes [41] are also independent
risk factors for hospitalization and admission to the ICU by COVID-
19 patients. Currently, type 2 diabetes in COVID-19 patients may
lead to a more robust inflammatory phenotype, leading to
inflammatory lung injury [42]. However, type 2 diabetes com-
monly coexists with obesity [42], and it is difficult to determine
which factor determines the ultimate immune phenotype in
humans; thus, appropriate animal models are crucial for addres-
sing this issue.

Receptors and additional host entry factors

The entry of SARS-CoV-2 into cells involves several processes [43];
SARS-CoV-2 initially anchors to the cell surface by binding to its
specific receptor ACE2. Subsequently, the spike (S) protein is
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cleaved into the S1 and S2 subunits by the furin protease,
followed by cleavage of the S2’ site either by the cell surface
protein transmembrane protease serine (TMPRSS2) or by cathe-
psins in the endolysosome, particularly cathepsin L. This complete
activation of the fusion process enables the virus to enter cells.
During this process, SARS-CoV-2 preferentially activates TMPRSS2.
If the target cell lacks sufficient TMPRSS2 expression or if the virus-
ACE2 complex does not encounter TMPRSS2, the virus bound to
ACE2 is internalized via endocytosis mediated by clathrin, leading
to late endolysosomal entry, followed by S2’ site cleavage by
cathepsins [44, 45]. In addition to ACE2, multiple molecules,
including C-type lectins, DC-specific intercellular adhesion
molecule-3-grabbing nonintegrin (DC-SIGN) [46], L-SIGN [47, 48],
T-cell immunoglobulin and mucin-containing molecule (TIM1)
[49], tyrosine-protein kinase receptor UFO (AXL) [50], CD147 [51],
and neuropilin 1 [52], have been proposed as alternative receptors
for SARS-CoV-2. Due to the widespread expression of receptors
and additional host entry factors in various organs of the body,
SARS-CoV-2 can cause multiorgan infections. In addition to
primary pulmonary and upper respiratory tract infections and
respiratory symptoms, COVID-19 patients also exhibit multiorgan
dysfunction, with the presence of SARS-CoV-2 RNA has been
detected in multiple organ systems [53, 54]. Currently, in-depth
research on the tropism of SARS-CoV-2 for different organs is
highly valuable, with latent infection with SARS-CoV-2 in the body
considered a potential mechanism contributing to long COVID-19
[55].

ANIMAL MODELS OF COVID-19
Nonhuman primate (NHP) models
Rhesus macaques (RMs) [1, 56], cynomolgus macaques (CMs) [56],
and African green monkeys (AGMs) [57-59] have been extensively
utilized as models to simulate SARS-CoV-2 infection in humans,
which leverages their physiological similarities. NHPs serve as
valuable models, replicating mild to moderate manifestations of
COVID-19 that are commonly observed in the human population.
One study compared the use of rhesus and cynomolgus
macaques as models for investigating COVID-19 infection [56].
Throughout the experiment, no notable weight loss or changes in
body temperature were observed. In contrast, other studies have
reported that infected rhesus macaques exhibited symptoms such
as fever and slight weight loss [60, 61]. In both rhesus and
cynomolgus macaques, SARS-CoV-2 replication occurs in the
upper and lower respiratory tracts, leading to pulmonary lesions
[56]. In cynomolgus macaques, viral loads in the upper respiratory
tract (URT) (nasal washes and throat swabs), bronchioalveolar
lavage (BAL) and gastrointestinal tract (rectal swabs) were
comparable to or greater than those in rhesus macaques [56].
The observed histopathological changes included the thickening
of alveolar spaces, damaged alveolar walls, eosinophilic and
neutrophilic infiltration, alveolar macrophages, a limited number
of lymphocytes, inflammatory cell infiltration, and alveolar type II
pneumocyte hyperplasia, as well as edema. The lungs of rhesus
macaques displayed pathological changes similar to those
observed in cynomolgus macaques, including an increased
prominence of bronchial-associated lymphoid tissue (BALT).
Therefore, both RMs and CMs are susceptible to SARS-CoV-2
infection, and the utilization of CMs will significantly alleviate the
pressure on the limited availability of RMs. After the primary
challenge, AGMs exhibited mild and varied clinical signs of
disease. Necropsy findings revealed different degrees of pulmon-
ary consolidation accompanied by hyperemia and hemorrhage in
the lungs [59]. In addition, SARS-CoV-2 was detected in rectal
swabs up to 15 days post infection (dpi), and the virus titer peaked
at 2-7 dpi [58, 59]. Prominent features included significant
inflammation and coagulopathy evident in both blood and
tissues. There was upregulated expression of IFN-stimulated genes
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(ISGs), as well as increases in IL-6 and IL-8 signaling activation, in
the infected lungs and peripheral blood. Moreover, the levels
transcripts associated with NK and T cells were decreased [59],
which is consistent with what has been observed in human cases.
Although a slight increase in antibody concentration was induced
after the primary challenge, this increase was enough to clear the
virus rapidly after rechallenge with an identical strain [59].

Ferret models

Ferrets are widely utilized as animal models for researching
respiratory viruses that have implications in human health. Ferrets
exhibited susceptibility to SARS-CoV-2, as evidenced by the
presence of viral RNA in various bodily fluids, including serum,
nasal washes, saliva, urine, and feces. Symptoms such as fever and
loss of appetite emerged at 10 and 12 dpi after virus inoculation
[62, 63]. Examinations conducted at 13 dpi revealed severe
lymphoplasmacytic perivasculitis and vasculitis. Additionally, there
was an increase in type Il pneumocytes, macrophages, and
neutrophils in the alveolar septa and lumen. Mild peribronchitis
was also observed in the lungs [62, 63]. Kim et al. reported that
aged ferrets, in comparison to their younger counterparts,
exhibited more severe clinical symptoms, higher viral loads,
prolonged nasal virus shedding, and increased inflammatory cell
infiltration in the lungs [64]. Ferrets play a pivotal role as effective
models for investigating the transmission dynamics of respiratory
viruses, such as SARS-CoV-2. According to multiple transmission
studies, all previously unexposed contact animals become
infected when cohoused with infected counterparts [64-671.

Hamster models

The Golden Syrian hamster is extensively employed in experi-
mental animal models and has been documented to facilitate the
replication of SARS-CoV-2. After intranasal infection with SARS-
CoV-2, infected hamsters exhibit moderate but recoverable
respiratory disease. Live virus is detectable in the lungs from 1
to 5 dpi [68, 69], and viral RNA is observed in the respiratory
system, feces, and kidney. Immunohistochemistry revealed SARS-
CoV-2 N protein positivity in olfactory neurons and the
duodenum. Histopathological examinations indicate an increase
in inflammatory cells and consolidation, covering 5-10% of the
lungs at 2 dpi and increasing to 15-35% at 5 dpi [69]. By 7 dpi,
consolidation further escalated, covering 30-60% of the lungs,
and a decrease in the number of olfactory neurons is observed in
the nasal mucosal region [69]. Notably, no apparent histopatho-
logical changes were observed in the brain, heart, kidney or liver
at 5 dpi [69, 70]. However, various variant of concern (VOC) strains
have emerged, and the Omicron virus induces a milder form of
the disease in both mice and hamsters [71]. Golden Syrian
hamsters, which serve as an animal model for COVID-19, have
been extensively used in research focused on antibodies [72] and
vaccines [73, 74].

Mouse models

The spike protein of SARS-CoV-2 exhibits limited affinity for the
mouse ACE2 receptor, leading to a reduced capacity for efficient
infection in mice. To overcome this barrier, several SARS-CoV-2
mouse infection models have been established. These include the
human angiotensin-converting enzyme 2 (hACE2) transgenic
mouse model [75, 76], the recombinant virus expressing hACE2
model [77-80], the reverse genetically modified SARS-CoV-2
infection model [81, 82], and a mouse-adapted virus model
[83, 84].

hACE2 transgenic and knock-in mouse models.  Full-length human
ACE2 cDNA was inserted into mouse ACE2 Exon 2 under the
control of the mouse Ace2 promoter [76]. Viral RNA was detected
in the brain, trachea and lung. No obvious clinical signs were
observed in the infected mice. In addition, both young and aged
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mice expressing hACE2 exhibited interstitial pneumonia charac-
terized by inflammatory cell infiltration, thickening of the alveolar
septa, and distinct vascular system injuries [76]. Notably, the aged
mice exhibited more severe pathological features, including
increased lesions in alveolar epithelial cells and focal hemor-
rhages. In aged hACE2 mice, an increase in the production of
cytokines, including eotaxin, G-CSF, IFN-y, IL-9, and MIP-1b, was
observed [76]. However, the response observed in young mice
was comparatively weaker than that in older mice [76]. There are
other mouse models in which a similar introduction results in mild
infection, with the mice showing no apparent symptoms [75].

A transgenic mouse model (HFH4-hACE2 in C3B6 mice)
expressing human ACE2 was constructed using a lung ciliated
epithelial cell-specific HFH4/FOXJ1 promoter [85]. These mice
exhibited elevated hACE2 expression in the lungs, with differential
expression noted in various tissues, such as the brain, kidney, liver,
and gastrointestinal tract. In the infected mice, notable symptoms
included respiratory distress, peri-bronchial and peri-vascular
infiltration, and the presence of edema along with hyaline
membrane formation. Notably, deceased mice displayed evidence
of brain infection, but this finding may not accurately represent
the pathogenesis of SARS-CoV-2 in humans [86].

The human ACE2 protein was expressed under the epithelial
cell cytokeratin (K18) promoter in K18-hACE2 transgenic mice [87].
hACE2 has been detected not only in epithelial cells that line the
respiratory tract but also in various organs, such as the kidney,
liver, spleen, and small intestine, and has low or no expression in
the brain [88, 89]. Infected K18-hACE2 mice displayed weight loss
and lethargy, with fatalities primarily attributed to central nervous
system (CNS) dysfunction. By 5 dpi, the lungs exhibited coalescing
interstitial pneumonia, characterized by collapsed alveoli with
thickened and congested septa [89]. Mononuclear cell infiltration,
including that by lymphocytes, macrophages, and plasma cells,
was predominantly observed in the peri-vascular region, peri-
bronchioles, alveolar septa, and alveolar sacs, as was pulmonary
edema [90]. Significant levels of viral RNA and live SARS-CoV-2
were detected in lung homogenates at 2, 4, and 7 dpi [90]. In
contrast, lower amounts of viral RNA were observed in the kidney,
heart, and spleen, and minimal or no viral RNA was detected in the
gastrointestinal tract. SARS-CoV-2 infection resulted in a notable
decrease in the number of B cells, CD4™ T cells, CD8™ T cells, and
monocytes in the peripheral blood at 5 dpi, accompanied by a
decrease in pulmonary function. At 7 dpi, the infected lung
exhibited an increase in proinflammatory cytokines, including IFN-
B, IL-6, CXCL10, CXCLY9, CCL5, CCL12, TNF, G-CSF, IL-10, IFN-y, IL-2,
CCL2, CCL3, CCL4, and CXCL1, compared to those in noninfected
K18-hACE2 mice [90].

In addition, mice exhibited anosmia during the early stages
following infection [91]. SARS-CoV-2 can infect the olfactory
epithelium of K18-hACE2 mice [91]. SARS-CoV-2 isolates obtained
from the brains and lungs of these mice exhibited variable
pathogenicity. The viruses isolated from postinfection brain and
lung tissues, when separately administered to hACE2 mice,
induced lethal infections in the brain and lungs, respectively
[92]. SARS-CoV-2 infection of neurons during the early phases
results in anosmia, closely resembling the loss of smell observed
after COVID-19 infection. Studies suggest a correlation between
disease severity and the viral infective dose in K18-hACE2 mice,
which may vary with different virus strains and experimental
conditions [93].

Consequently, K18-hACE2 mice serve as a valuable model for
investigating the pathological mechanisms underlying both mild
and severe COVID-19 and evaluating potential therapeutic
approaches.

Recombinant  virus expression in human ACE2-transduced

mouse models. Recombinant human ACE2-transduced mouse
models, such as those for adenovirus 5 (Ad5) [77, 78], adeno-
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associated virus (AAV) [94, 95], Venezuelan equine encephalitis
Replicons Particles (VRP) [79], and lentivirus [80], were developed.
High viral titers and inflammatory cell infiltration were detected in
the lung. However, when adeno-associated virus (AAV) was
transduced intraventricularly and mice were intraventricularly
administered SARS-CoV-2, weight loss and death occurred [95].
The establishment of a virus intranasally or intratracheally
transduced model expressing hACE2 in mouse lungs was efficient
and rapid, requiring only 2-3 weeks. This model has potential for
rapid validation in vaccine, drug, and antibody testing. The
limitation of using transduced mouse models lies in their inability
to manifest severe disease and the lack of lethality. The expression
of hACE2 depends on the tropism of the virus vectors and the
route of SARS-CoV-2 administration, which determines whether
pulmonary or extrapulmonary disease manifestations occur. These
models cannot accurately reflect the physiological expression of
ACE2 or the viral infection status.

Mouse-adapted virus mouse models. Mouse-adapted strains play
a pivotal role in advancing the understanding of pathogenic
mechanisms and facilitating drug/vaccine development for highly
pathogenic coronaviruses, such as SARS-CoV MA15 [96]-infected
WT BALB/c mice and MERS-CoV MA30 [97]-infected hDpp4 Ki
C57BL/6 mice. Due to the tendency of knockin mice to
predominantly exhibit mild infections or succumb to brain
infections, researchers have initiated the development of a
mouse-adapted strain model for SARS-CoV-2 with the aim of
closely reproducing the pathogenesis observed in COVID-19.

A study focused on the adaptation of the original SARS-CoV-2
strain to the lungs of wild-type BALB/c mice, which resulted in the
generation of the mouse-adapted strain MASCp6. The presence of
viral RNA was detected in various organs, including the lungs,
trachea, feces, heart, liver, spleen, and brain tissues. MASCp6
infection in mice did not lead to significant weight loss but
induced moderate interstitial pneumonia, with aged mice
exhibiting more severe pathological manifestations than younger
mice [83]. After continuing the adaptation process for 36 passages,
researchers obtained the MASCp36 virus, which was found to be
fatal in 9-month-old BALB/c mice. MASCp36 infection caused
necrotizing pneumonia and widespread diffuse alveolar damage
(DAD), accompanied by a substantial increase in cytokine and
chemokine production in the lung parenchyma. Notable factors
included IL-6, CCL7, CCL12, CXCL10, CXCL16, CCL3, CXCL1, and
CXCL13. Furthermore, MASCp36 infection led to significant cell
death, the loss of AT2 cells, and the infiltration of neutrophils and
macrophages. The N501Y and Q493H mutations in the receptor
binding domain (RBD) of MASCp36 contributed to a high affinity
for hACE2. The MASCp36-infected mouse model effectively
simulates severe cases of COVID-19 [83, 98].

Another study employed reverse genetics to augment the
affinity of the virus for mouse ACE2, resulting in a mouse model
directly susceptible to infection in the upper and lower respiratory
tracts [81]. Subsequent serial passaging generated MA10, which
caused lethality in 25% of 12-month-old BALB/c mice, with
decreased lung function, acute lung injury (ALI), ARDS, chronic
lung disease, and the development of infection-induced pulmon-
ary fibrosis [82, 99].

Wong et al. employed a recombinant virus with the spike N501Y
mutation and passaged it 30 times in mouse lungs to obtain the
SARS2-N501YMA30 mouse-adapted strain. This strain exhibited
high-level replication in the lungs, with live virus detected only on
the second day post infection in the serum, brain, heart, liver,
kidneys, spleen, and small intestine. The SARS2-N501Yya30 Strain
caused lethality in both young BALB/c mice and middle-aged
C57BL/6 mice, and induced peripheral blood lymphopenia in
middle-aged mice. Increased levels of eicosanoids, specifically
prostaglandin D2 (PGD2), and elevated phospholipase (phospho-
lipase A2 group 2D or PLA2G2D) levels during SARS-CoV infection
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were linked to adverse outcomes in aged mice [100], demonstrat-
ing the increased susceptibility of aged or middle-aged mice to
SARS-CoV-2 infection [101].

Yan et al. conducted a study involving the preparation of two
mouse-adapted SARS-CoV-2 strains, namely, BMA8 in BALB/c mice
and C57MA14 in C57BL/6 mice. Both viruses exhibited lethality in
young and middle-aged BALB/c mice, but C57MA14 induced
lethality in middle-aged C57BL/6 mice, with partial lethality
observed in young C57BL/6 mice. The infected mice demon-
strated high levels of viral replication in the lungs, elevated
inflammatory responses, and lymphopenia [102]. Another mouse-
adapted virus, HRB26M, was nonlethal and might be associated
with mutation of the adaptogenic strain and the initial strain [103].

The mouse-adapted strain model effectively recapitulates the
progression of infection and lung injury repair observed in COVID-
19 patients. Underlying conditions or genetic factors are crucial
risk factors for severe COVID-19 infections. The limited binding of
mouse ACE2 to SARS-CoV-2 limits the study of certain disease
models related to underlying conditions. Therefore, the SARS-CoV-
2 mouse-adapted strain can be used to directly infect with any
wild-type mouse or mouse model under specific conditions, thus
allowing for a more comprehensive elucidation of pathogenic
mechanisms based on sex, age [101, 104], obesity [105], diabetes,
chronic lung disease, coinfection with other respiratory viruses,
and secondary bacterial infection (Table 1).

Long COVID-19 models. Long COVID-19 or postacute sequelae of
SARS-CoV-2 infection (PASC) refers to a collection of symptoms
that persist for an extended period (often weeks to months) after
the acute phase of COVID-19. Symptoms may include fatigue,
cognitive difficulties, shortness of breath, joint pain, and other
persistent health issues. Long COVID-19 can affect multiple
organs, including the respiratory system, cardiovascular system,
and neurological system. RMs and AGMs were inoculated with the
2019-nCoV/USA-WA1/2020 strain of SARS-CoV-2, and neuroin-
flammation, neuron degeneration, apoptosis, neuronal damage,
chronic hypoxemia and brain hypoxia were observed in SARS-
CoV-2-infected NHPs [106]. Therefore, the NHP model may be
used to assess neurological symptoms associated with “long
COVID-19".

In the SARS-CoV-2-infected Golden hamster model, there was a
decrease in burying activity compared to that in mock-treated
animals, indicating heightened compulsiveness or anxiety-like
behaviors. Despite viral clearance, both the olfactory bulb and
olfactory epithelium exhibited myeloid and T-cell activation,
proinflammatory cytokine production, and an interferon response
[68]. Another hamster model study indicated that SARS-CoV-2
infection induced dysregulated alveolar regeneration and sub-
pleural fibrosis [107].

K18-hACE2 mice infected with a low dose of SARS-CoV-2
exhibited characteristic lung fibrosis and increased expression of
the proinflammatory kinase B1 receptor (B1R) in the brain. These
mice displayed cognitive impairments that were characterized by
heightened anxiety and diminished exploratory behavior and
attributed to the enduring effects of SARS-CoV-2 infection on
brain tissue. Model mice with moderate SARS-CoV-2 infection
exhibit increased CCL11 levels and microglial activation, which are
associated with neurogenesis impairment and cognitive dysfunc-
tion [108]. K18-hACE2 mice may have potential as a model for
investigating long COVID-19 in the nervous system [95, 109].

Mouse-adapted (MA10) SARS-CoV-2 induces clinical symptoms
of respiratory distress and lung fibrosis in mice [99]. Recently,
Gressett et al. reported that MAT0 infection induced brain
pathology and neuroinflammation in ten-week-old and one-
year-old female BALB/cAnNHsd mice at 60 dpi. Pathological
changes included a decrease in neurons and an increase in
microglia in the hippocampus, which contributes to long-term
neurological alterations in a brain region that is crucial for the
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consolidation and processing of long-term memory [84]. This
model holds promise for conducting research on neural inflam-
mation and the recovery of brain function in individuals
experiencing persistent cognitive dysfunction associated with
“long COVID-19”, thereby facilitating the swift development of
innovative therapeutic strategies [84]. In the AAV-hACE2-
transduced immunocompetent humanized MISTRG6 mouse
model of infection with SARS-CoV-2, there were induced innate
and adaptive immune responses for up to 28 dpi. These cells
exhibited key features of chronic COVID-19, such as weight loss,
lung fibrosis, sustained viral RNA, a macrophage response,
continuous expression of interferon-stimulated genes, and T-cell
lymphopenia [110].

Transmission models. The primary modes of transmission for
SARS-CoV-2 include respiratory droplets, contact, and respiratory
aerosols. Ferrets serve as a valuable model for investigating the
transmission dynamics of respiratory viruses. Despite the absence
or mild presentation of clinical symptoms, considerable shedding
of SARS-CoV-2 is observed in the respiratory tract. According to
numerous transmission studies, all previously unexposed contact
animals became infected during cohousing. Direct contact
transmission of SARS-CoV-2 in ferrets was effectively prevented
by intranasal administration of a fusion inhibitory lipopeptide. This
model is well suited for assessing the efficacy of drugs to prevent
SARS-CoV-2 transmission [64-67]. Syrian hamsters infected with
SARS-CoV-2 can transmit the virus to uninfected hamsters through
both direct contact and aerosols. The virus replicates in nasal and
lung tissues, causing damage to all cells within the olfactory
receptor cell (ORN) lineage [66, 69, 111, 112]. Raccoon dogs, which
are members of the canid family, are among the animals whose
genetic material has been identified in swabs collected from the
Huanan Seafood Wholesale Market in Wuhan, China that is
associated with the emergence of the COVID-19 pandemic.
Raccoon dogs infected with SARS-CoV-2 exhibited mild clinical
symptoms, with viral replication and tissue lesions primarily
observed in the nasal conchae. Furthermore, approximately two-
thirds of the Raccoon dogs that came into contact were found to
be seropositive [113]. Evaluation of the three transmission routes
in hACE2-KI C57BL/6 mice revealed that approximately 53.8% of
the closely contacted hACE2-KI C57BL/6 mice were seropositive
for SARS-CoV-2 antibodies. Additionally, 30% of hACE2 KI C57BL/6
mice were seropositive for SARS-CoV-2 antibodies through
exposure to respiratory droplets, and successful aerosol inocula-
tion of hACE2 mice required elevated viral concentrations [114].
Rodriguez et al. demonstrated that neonatal K18-hACE2 mice
aged 4-7 days could release the virus and transmit it among
siblings within the same litter, resulting in a 100% mortality rate
among the exposed pups [115].

IMMUNITY TOWARDS SARS-COV-2

Innate immune response in patients

The innate immune system represents the first line of defense
against viral invasion and involves not only immune cells but also
tissue cells. Ciliated cells in the nasal cavity serve as the initial
target for the entry of SARS-CoV-2; these cells allow the virus to
propagate to other areas of the respiratory tract through
replication and release within these cells [116]. Simultaneously,
virus-infected epithelial cells undergo pathological cell death
[117], during which viral proteins are released. Subsequently,
phagocytic cells at the mucosal site take up both free viral
particles and viral proteins. During this process, infected cells and
phagocytic cells recognize and bind pathogen-associated mole-
cular patterns through pathogen recognition receptors (such as
Melanoma differentiation-associated gene 5 (MDA5) [118], Toll-like
receptor 3 (TLR3) [119], and TLR7 [120]), thereby activating
downstream pathways related to interferon-regulatory factor 3
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(IRF3), nuclear factor-kappa B (NF-kB), and other transcription
factors, and generating IFN and inflammatory responses to
combat viral infection. Defects in TLR3 and TLR7 have been found
to lead to severe COVID-19 [121, 122], highlighting the critical role
of pathogen recognition receptor-mediated innate immune
responses in controlling COVID-19 infection. A delayed and
impaired type | interferon response is considered to be a
significant factor that can induce severe cases of COVID-19
[123], possibly due to the presence of autoantibodies against type
| interferon [124]. Moreover, excessive levels of proinflammatory
cytokines further promotes the infiltration of inflammatory cells
[125]. Patients with COVID-19 exhibited increased numbers of
neutrophils in the circulation and lungs, which indicate enhanced
functionality in NETosis and oxidative bursts [126]. These
neutrophils are believed to induce excessive inflammation and
promote immune thrombosis, thereby leading to the develop-
ment of severe COVID-19 [127, 128]. Neutrophils can also be
associated with long COVID-19 [129]. In patients previously
hospitalized for COVID-19, longitudinal tracking of alternative
neutrophil extracellular trap (NET) markers for at least 6 months
revealed sustained elevation in the serum concentrations of NE,
MPO, and free DNA. While these levels were lower than those in
acute COVID-19 patients, they remained higher than those in the
non-COVID-19 control group [130]. Moreover, NETs are novel
antigens for the adaptive immune system that potentially induce
autoantibodies and trigger persistent autoimmune inflammation
[129, 131]. The frequency and absolute numbers of blood pDCs
and DCs, particularly cDC1s and pDCs, in COVID-19 patients are
reduced [132-134]. Furthermore, decreases in HLA-DR and CD86
on DCs may lead to delayed or impaired T-cell responses, thus
contributing to the development of severe COVID-19 [134-136].
Alberto Pérez-Gémez et al. reported that the quantity and
functional defects of DCs persist seven months after infection
[137]. However, little is known about the presence of dendritic
cells in the respiratory tract of COVID-19 patients. Research
indicates that during SARS-CoV-2 infection, large numbers of
monocytes in the peripheral blood may be recruited to the lower
respiratory tract via the CCR2-CCL2 axis [138-140], which
subsequently differentiate into monocyte-derived macrophages
in the lungs. These macrophages can secrete numerous chemo-
kines and inflammatory factors, yet severe pneumonia is unlikely
to be attributed to the excessive production of proinflammatory
cytokines by these cells [133]. At the site of infection, the function
of macrophages extends beyond cytokine secretion to antigen
presentation, nd these macrophages providing signals for the
sustained activation of specific T cells. In patients with severe
COVID-19, impaired antigen presentation by alveolar macro-
phages can be observed [133] and is potentially associated with
compromised T-cell responses. Monocyte-derived macrophages
also exhibit a profibrotic phenotype that is closely associated with
the profibrotic environment in the lungs during severe COVID-19
[141]. Currently, whether macrophages in the respiratory tract are
associated with long-term COVID-19 remains unclear. Natural killer
(NK) cells, which are important effector cells within the innate
immune system, are capable of directly eliminating virus-infected
cells [142]. Previous studies have indicated that upregulated
expression of inhibitory receptors, downregulated expression of
activating receptors, and an exhausted phenotype in NK cells may
be associated with severe COVID-19 [143].

Innate immune responses in animal models

The pathogenesis of this disease differs in each mouse model.
Compared with those of WT mice, mice lacking IFN-I and IFN-II
receptors were more susceptible to viral replication and had
worsened pulmonary congestion when infected with SARS-CoV-2
[82]. In contrast, K18-hACE2 mice exhibited robust infection
accompanied by sustained increases in the production of IFN-I,
IFN-Il, and IFN-IIl, which persisted until the virus reached peak
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replication. This finding underscores the link between IFN
expression and the severity of COVID-19 in patients [91, 144].
When WT mice were infected with MA-induced SARS-CoV-2, the
increase in IFN production was detrimental because it intensified
the pathogenic inflammatory response [145]. Likewise, K18-hACE2
mice infected with SARS-CoV-2 exhibited significant immune cell
migration to the lungs; the immune cell population included DCs,
monocytes, macrophages, and CD4" and CD8" T cells, as well as
significant morbidity and death [91]. Thus, prophylactic and
therapeutic IFN therapy protected against SARS-CoV-2 infection in
BALB/c mice, as observed with SARS-CoV and MERS-CoV infection
[81]. Animals given IFN-Ill had far less viral proliferation in their
lungs [81]. Taken together, these findings showed that early IFN
signaling provides protection against SARS-CoV-2 infection, but
inadequate IFN induction or extended IFN expression provides
only a limited level of protection against viral infection.

Other animal models of infection with SARS-CoV-2, such as
those in hamsters, ferrets, and NHPs, exhibit modest disease [146].
IFN-B is not produced in hamsters or ferrets infected with SARS-
CoV-2 [147, 148], although the expression of ISG15 was detected
after infection and persisted at a high level until 8 dpi, at which
point the virus had completely cleared [148]. IFN-a administered
prophylactically to hamsters could lower viral titers and ameliorate
lung inflammation. Conversely, NHPs showed a greater IFN
response to SARS-CoV-2 infection than other animal models when
they were infected with the virus, as evidenced by the
considerable upregulation of IFN-I and IFN-II expression in BALF
and the induction of robust ISG expression in the lungs [149, 150].
Additionally, prophylactic IFN-a therapy decreased lung damage
and the viral load after SARS-CoV-2 infection in NHPs, suggesting
that the IFN-I response is protective [151]. Overall, these findings
suggest that prophylactic IFN-I therapy may decrease the viral
load in the lung and transmission, indicating the need for
additional research on the potential application of this treatment
as a high-risk strategy.

SARS-CoV-2 infection triggers the recruitment of inflammatory
cells, including macrophages, monocytes, DCs and neutrophils, to
the lung. Unrestrained myeloid immune cell infiltration con-
tributes to pathology in the lung through the excessive secretion
of proteases and reactive oxygen species and abnormal cytokine
production. Characterizing the driver and involvement of myeloid
cell infiltration is critical for developing immunotherapies to help
improve immune dysregulation in patients infected with SARS-
CoV-2. Animal models are valuable tools that allow us to access
tissues at any stage of infection.

In  SARS-CoV-2-infected cynomolgus macaques, widespread
degranulation of mast cells in the lung coincided with severe
damage to the airways and lung-associated vasculature, which are
consistent with severe outcomes [152]. Degranulation of mast
cells was also found in the airways of AAV-hACE2-transduced mice
and contributed to severe lung pathology after SARS-CoV-2
infection, consistent with clinical observations in COVID-19
patients [152].

A multiomics analysis of rhesus macaques combined with bulk RNA
sequencing (RNA-seq) transcriptomic profiling of BALF and peripheral
blood samples, as well as serum proteomics, showed that SARS-CoV-2
infection leads to massive macrophage recruitment and activation in
the lung [153]. M1 macrophages and IL-6-, IL-10-, and IFNa-activated
macrophages in BAL fluid and peripheral blood were enriched on
days 1-4 postchallenge [60, 153]. Cellular trafficking studies in rhesus
macaques and African green monkeys showed that during the acute
phase of infection, CD16" monocytes migrate rapidly from the blood,
leading to CD11b"CD16" macrophage accumulation in the lungs.
Increased monocyte infiltration and macrophage accumulation in the
lung are associated with a higher viral load and worse disease
outcomes [154].

Similarly, lymphocytes, macrophages and neutrophils accumu-
late in the alveolar interstitium and consequently result in
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thickening of the alveolar walls in hACE2 transgenic mice on day 3
post SARS-CoV-2 infection [75], consistent with the findings in
K18-hACE2 transgenic mice, HFH4-hACE2 transgenic mice and
CRISPR/Cas9-hACE2 knock-in mice [76, 86, 155].

In a recent study, researchers administered the clinically
approved JAK1/JAK2 inhibitor baricitinib to rhesus macaques
infected with SARS-CoV-2. The findings revealed rapid and
remarkably potent suppression of cytokine and chemokine
production by lung macrophages in the treated macaques, which
resulted in reduced inflammation, decreased lung infiltration by
inflammatory cells, diminished NETosis activity, and limited lung
pathology [156].

NK cells traffic to infected sites in lung tissue to help clear
viruses in SARS-CoV-infected mice [157]. In the hACE2-transgenic
mouse model, the level of NK cells in SARS-CoV-2-infected lungs
tended to increase [90], which was consistent with the slight
upward trend observed in the BALF of COVID-19 patients.
However, determining the features and function of NK cells
during SARS-CoV-2 infection need additional detailed studies.

These studies provide evidence that innate immune cell
function may be an important driver of COVID-19, and modulation
of this process could be an effective immunotherapy for disease
treatment. However, further studies are needed to explore when
and how to modulate myeloid cell function during infection.

The adaptive immune response in patients

The humoral immune response involves the production of
neutralizing antibodies by B cells, which directly exert antiviral
effects or generate binding antibodies that mediate antibody-
dependent cellular cytotoxicity (ADCC), antibody-dependent
cellular phagocytosis (ADCP), and complement-dependent
cytotoxicity (CDC), as well as the functions of antigen presenta-
tion and cytokine secretion by B cells. Neutralizing antibodies
were induced at high levels approximately 10-15 days after
onset in patients with severe and mild infection. While both
patients with severe and mild infection exhibited similar kinetics
of the neutralizing antibody response, the magnitude of the
response was positively correlated with disease severity [158].
Moreover, the clonal expansion of B cells and the proportion of
plasma cells are both greater in patients with severe COVID-19
than in patients with mild disease [124, 159]. Subsequent studies
have shown that elevated levels of antibodies in patients with
severe COVID-19 may not correlate with the resolution of the
disease [160]. Anti-S IgG may mediate microvascular thrombosis
through complement activation [161] or enhance viral entry
through the ADE mechanism [162]. In addition, increased viral
antigen levels in patients often result in elevated antibody titers.
During infection, the levels of IgG antibodies remain relatively
stable for up to 5 months [163], which correlates with a
significant decrease in the risk of reinfection [164]. While the
antibody response in peripheral blood has been extensively
studied, reports on the antibody response at the site of infection
are scarce. The specific role played by antibodies at the site of
infection remains unresolved, necessitating further mechanistic
research.

The cellular immune response mainly refers to the specific
T-cell response. Virus-specific T cells play a crucial role in
combating viral infections [165, 166]. After recognizing specific
antigens, they can enhance the antiviral activity of other cells by
secreting IFN-y, regulating the activation and antigen presenta-
tion functions of other immune cells, or directly killing infected
target cells to exert antiviral effects [167]. Several publications
have focused on investigating SARS-CoV-2-specific T-cell
responses in the peripheral blood of COVID-19 patients
[168-171], with findings suggesting that the rapid induction of
virus-specific T cells in peripheral blood may accelerate viral
clearance and control pathological damage [171]. Additionally,
research has indicated that the functionality of virus-specific
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T cells in peripheral blood is greater in asymptomatic COVID-19
patients than in symptomatic individuals [169]. These insights
underscore the significance of virus-specific T-cell responses in
combating COVID-19 infections. Given that the respiratory tract is
the primary site that is directly targeted by SARS-CoV-2 [172],
further detailed investigations into virus-specific T cells within this
region are essential, as they are at the forefront of the fight
against viral infections. To date, only a few studies have described
the specific T-cell responses in the airways, including the upper
and lower respiratory tracts. They found that specific T cells in the
airways of COVID-19 patients have strong cytokine-secreting
capabilities [173], and long-lived SARS-CoV-2-specific tissue-
resident T cells could be induced by SARS-CoV-2 infection
[174, 175], which may help prevent future infections. However,
there are still several unresolved questions, such as how specific
T cells in the airways are regulated during infection, how they
function, and how they interact with other cells. Addressing these
questions will contribute to the development of future immu-
notherapy methods and vaccines. Nevertheless, studying these
questions in humans is very complex, as there are many
confounding factors, and complex issues need to be simplified
by relying on animal models.

Adaptive immune response in animal models

Humoral immune responses against SARS-CoV-2 infection have
been described in animal models. In mouse models and hamster
models, both virus-specific and neutralizing antibodies were
detected within 7 dpi [94, 176]. In addition, in NHP models
infected with SARS-CoV-2, virus-specific and neutralizing anti-
bodies developed by 10 dpi, and the titers of antibodies peaked
between 15 and 20 dpi [58, 59], mirroring the immune response
observed in COVID-19 patients. Furthermore, several other studies
have reported that virus-specific antibodies could protect NHPs
from SARS-CoV-2 reinfection [149, 177]. In a study involving K18-
hACE2 mice, SARS-CoV-2 infection was found to trigger the
formation of B-cell clusters that accumulated in the peribronchial
areas. Remarkably, even low doses of SARS-CoV-2 infection were
sufficient to generate genuine and bystander subsets of lung-
resident memory B cells (MBCs), even in asymptomatic animals
without apparent weight loss. This finding suggested that
asymptomatic individuals are capable of mounting memory
responses to SARS-CoV-2 [178].

Numerous lines of evidence from animal models suggest the
importance of understanding human SARS-CoV-2-specific T cells.
An investigation of T-cell reactions to SARS-CoV and MERS-CoV
infection revealed that IFN-y-induced protective immunity in
mice is mediated by airway CD4" T cells [165]. In addition, virus-
specific memory CD8% T cells could prevent lethal SARS-CoV
infection in mice [179]. These findings imply that controlling
SARS-CoV-2 infection may depend on the cellular immune
response. The primary problem with SARS-CoV-2 mouse models
is that they swiftly lead to virus clearance, rehabilitation or
death, which reduces the amount of time T cells can provide
defense. In a mouse model of SARS-CoV-2 infection, systemic or
lung-resident memory CD4" and CD8' T cells could offer
effective protection in the absence of neutralizing antibodies
[180]. Through tissue-resident memory T cells, immunization
with a single CD8" T-cell epitope can safeguard mice against
SARS-CoV-2 infection in the absence of neutralizing antibodies
[181]. Another interesting question is the role played by IL-10-
producing SARS-CoV-2-specific T cells. A study in human
populations has indicated that higher levels of IL-10 in plasma
may prevent the onset of symptoms in individuals infected with
SARS-CoV-2 [169]. Previous research in mouse models of
infection with SARS-CoV has shown that while IL-10 does not
affect viral clearance kinetics, it provides protective effects by
inhibiting excessive pathological damage [165]. Similarly, IL-10-
producing SARS-CoV-2-specific T cells exist in SARS-CoV-2
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infection [180], but whether they mediate protective immune
effects needs to be further elucidated in a mouse model.

Numerous studies have demonstrated the roles of CD4" and
CD8" T cells in protective immunity in NHP models. Comprehen-
sive analyses of CD4" T-cell responses using the NHP model
verified that SARS-CoV-2 could elicit a strong CD4" T follicular
helper cell response in the germinal center [182]. The same study
also showed that CD4" T cells were predominantly involved in
Th1-biased responses [182]. Furthermore, in convalescent rhesus
macaques, depletion of CD8" T cells decreased protection against
rechallenge [166]. These findings were extended in later research
on vaccination-mediated defense against Omicron variants,
demonstrating the association between reduced viral loads
following SARS-CoV-2 challenge and CD8" T-cell frequencies
[183]. A study employing intranasal vaccination to produce viral
nonspike antigens also revealed the function of CD8" T cells in
vaccine-induced protection in rhesus macaques [184]. In sum-
mary, a number of lines of research using various animal models
have demonstrated the importance of T-cell responses in
defending against SARS-CoV-2 infection.

COVID-19 vaccines and antiviral therapeutics

Since the COVID-19 outbreak, several therapeutic approaches,
including the use of vaccines, antibodies, and drugs, have been
investigated for COVID-19 treatment to lessen the impact of SARS-
CoV-2 on general public health and the economy. Animal models
are crucial resources in the development of these treatment
approaches.

Mouse models have been the initial choice for the in vivo
evaluation of vaccine candidates and antiviral therapeutics for
SARS-CoV-2. Compared to other experimental animal models,
mice have various advantages, including their small size, low
cost, capacity to reproduce quickly to reach large group
numbers, and the accessibility of research tools. A variety of
COVID-19 vaccine candidates, such as mRNA vaccines (mRNA-
1273), adenoviral vector vaccines (ChAdOx1 nCoV-19 and Ad5-
nCoV), recombinant subunit vaccines (NVX-CoV2373 and RBD-
Fc-based COVID-19), and inactivated vaccines (BBIBP-CorV and
PiCoVacc), have been tested in mice. These vaccine candidates
provided mice with protective immune responses [185-188] and
prevented them from contracting SARS-CoV-2 infection
[187, 189, 190]. Remdesivir, an antiviral drug licensed for use
in an emergency setting to treat COVID-19, has the potential to
lower the lung viral load in mice [191] and was additionally
identified in SARS-CoV-2-infected adenovirus-transduced mice
and BALB/c mice infected with mouse-adapted SARS-CoV-2
[103]. PEG-IFN-I1a, a phase 3-ready therapy for hepatitis delta
virus, diminished the amount of SARS-CoV-2 replication in the
lungs of Hfh4-ACE2 transgenic mice [81]. Monoclonal antibodies
(mAbs) can be used to generate passive immunity, which is a
potential strategy for preventing emerging viral infections. In
aged BALB/c mice, neutralizing mAbs from COVID-19 survivors
could lower the viral loads of SARS-CoV-2 [192], prevent
dramatic weight loss caused by SARS-CoV-2, and reduce viral
loads in other mouse models [193]. Similarly, recombinant SARS-
CoV-2 RBD- and S protein-immunized mouse-derived neutraliz-
ing mAbs successfully reduced viral shedding and clinical
symptoms in hACE2-transduced mice [77, 194]. Although the
pathogenesis and host immune responses of SARS-CoV-2 in
humans may not be entirely reflected in genetically modified
mice or mouse-adapted SARS-CoV-2 strains, these mouse
models can still be useful for preliminary analyses and large-
scale investigations of vaccine candidates and antiviral
therapies.

The use of hamster models has been widespread in research on
a variety of viral diseases [195]. Model hamsters are very
susceptible to SARS-CoV-2 infection, have a rapid reproduction
rate, are tiny, have a pathophysiology similar to humans, and have
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been utilized in a number of preclinical efficacy trials for antiviral
treatments and vaccine candidates. Hamster models have proven
to be very helpful in assessing vaccine candidates. Hamsters
vaccinated with an adenovirus serotype 26 vector-based vaccine
that expressed a stabilized SARS-CoV-2 spike protein generated
neutralizing antibodies and protected the animals against severe
clinical illness [74]. Similarly, an NDV vectored vaccine expressing a
membrane-anchored spike protein of SARS-CoV-2 (NDV-S)-inocu-
lated hamsters showed decreased lung virus titers with decreased
body weight loss after SARS-CoV-2 challenge [196]. In SARS-CoV-2-
infected Syrian hamsters, conventional or high-dose hydroxy-
chloroquine did not diminish viral shedding or demonstrate any
therapeutic advantages [197], and favipiravir reduced viral
shedding and transmission only at high doses [197]. In a
preclinical study using a Syrian hamster model, a single
prophylactic dose of drug (CTC-445.2d) was found to be protective
against SARS-CoV-2 infection [198]. Furthermore, neutralizing
antibodies that target the RBD or spike protein administered
prophylactically or therapeutically successfully limited viral shed-
ding in hamster models [199-202].

Ferret models are often used to study the pathogenesis and
transmission of influenza viruses because their receptor dis-
tribution and clinical course of illness are comparable to those of
humans [203]. In early 2020, it was discovered that humans and
ferrets have similar ACE2 sequences that are essential for
binding viruses, suggesting that ferrets could serve as an animal
model for SARS-CoV-2 infection [204]. Due to their high
vulnerability to SARS-CoV-2, ferret models are used to assess
the effectiveness of antiviral treatments. Model ferrets were used
to assess the effectiveness of repurposed drugs and vaccine
candidates [205]. MK-4482/EIDD-2801, which is a ribonucleoside
analog inhibitor originally used to treat influenza viruses,
protected against SARS-CoV-2 infection via oral administration
[206]. Additionally, ferrets vaccinated intramuscularly or intra-
nasally with an adenovirus vectored vaccine (Ad5-nCoV) could
inhibit viral replication in the URT after being challenged with
SARS-CoV-2 [189].

Because NHP models resemble humans in both physiology and
phylogeny, they are frequently regarded as the gold standard
model for studying emerging viruses [207]. Among the 14
mammalian species, the ACE2 gene of rhesus macaques shares
23 critical residues with hACE2 in the region of the protein that
makes close contact with the RBD of the SARS-CoV-2 spike protein
and has the greatest receptor activity [208]. The development of
COVID-19 vaccines and antiviral therapies in NHPs has attracted
significant attention. However, hydroxychloroquine did not
demonstrate prophylactic or therapeutic protection in rhesus or
cynomolgus macaque models. Moreover, remdesivir has been
shown to ameliorate SARS-CoV-2-induced lung damage and lower
the viral load in a rhesus macaque model [209]. Neutralizing
antibodies that target the spike protein could provide therapeutic
activity and protection against SARS-CoV-2 infection in NHP
models [202, 210]. In regard to preclinical research, NHP models
are advantageous since their immune responses after SARS-CoV-2
infection closely resemble those of key COVID-19 infections in
humans [154]. Therefore, scientists evaluating different COVID-19
vaccine platforms, including adenovirus vectored, mRNA, inacti-
vated, and subunit vaccines, have utilized NHP models to evaluate
the safety, immunogenicity, and effectiveness of protection
[211-213] (Table 2).

SUITABILITY OF ANIMAL MODELS FOR INVESTIGATING COVID-
19: A MULTI-OMICS PERSPECTIVE

Currently, a diverse array of small and large animal models, such
as the mouse, hamster, ferret, rhesus macaques, and African green
monkey models, have become available for studying COVID-19.
An imperative consideration is the comprehensive evaluation of

Cellular & Molecular Immunology (2024) 21:119-133



=]
>
(o]
v
o
c
o
- - - = - =
-
]
v
= - = - -
02
2
- v
o3 =
g E 9
T £ <
<= 0O > > = | = =| =
>
=
c
F
£
=
]
S
5]
c
£ =|= - - - -
w
]
=
v
v
I
> - = - = - - =
w
-]
<
=2 - = - rd - =
w
(=]
S
S
[a) - = - - - =
c
K]
=]
S
2 3
= c
k] o
5 i3] £
w g 2
= Cwn
2 < £
[}
R4, S =9
-+
N o Ng 22
! 1 =T Ew
> < > 9 c S &
o ®© 0= =& ©
w Y T E_ €
L0 T n TS =T®
o Y uw wn-= a7y 2
OD:C [ = C
- < o < O £E£ ¢
O O 9 ogm =]
5 ©°2 g=2 L 22 ¢
¢ @E NoT S6p 0
~ < 029 228 c US@
' ()] o) = "‘Q-r_u":'; >0 ¢
> c C D-N Q =9 2
0O = = 56 ¢ Eoc ®YC
(R 2 02920 228 2%59
o 8 SNg9E 2 238 849
x o N5 = —~ o w2 Oo o
< E S282%8 >F >>E £
w3 25282 €5 B2 295
= 3 72237 O 255 2C
o c E 3 o> T 0208 £ € ¢
- << WwWn=2cm I cxcs a'sm©
(%)
]
3
]
:
]
£ 1S
£ ~
© L
o« v &
o < >
< o
S V)
<) o 7 @
=1 ] %) e
© 1% o
(S] = < [on
= T v n S
Q [N T | [T
Q w cC 30U © S
I c 0x @ g €
o
v T £ £Ec o S
c 9 P G =
[ = 2| = o o
Slecls | € 35
i ® 3 28 o & v £
S E c 28 %2 - =
L = (] = v C
= ¢ g 82 9 & 5 < S
s < < FJd =TI u x O

Cellular & Molecular Immunology (2024) 21:119-133

African green monkey
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these models to determine their fidelity in recapitulating
the complexities of COVID-19. Leveraging cutting-edge multio-
mics technologies, encompassing transcriptomics, proteomics,
metabolomics, and epigenetics, will facilitate a panoramic
assessment of these animal models.

Here, our initial exploration entailed comparing transcrip-
tomic alterations in the lung tissue of various animal models
with postmortem data from COVID-19 patients. The data sources
are presented in Table 3. Significant enrichment of key pathways
associated with the innate immune response, inflammation,
cytokine—cytokine receptor interactions, and chemokine and
adhesion pathways was observed across multiple animal
models, mirroring the signatures observed in human COVID-19
patients (Fig. 1a). The K18-hACE2 mouse model and mouse-
adapted virus MASCp36 mouse model, both of which pro-
gressed to severe disease phenotypes, exhibited the highest
similarity in enriched KEGG pathways with severe cases of
human COVID-19 (Fig. 1b). The lack of omics data from lung
tissues of mild COVID-19 patients presents a challenge in
comparing mild infection models.

CONCLUSIONS AND PERSPECTIVES

In-depth research on SARS-CoV-2 infection requires the use of
appropriate animal models, which are essential for understanding
the pathogenesis and immune responses of this disease and will
contribute to the development of antiviral drugs and vaccines.
Here, we provide a comprehensive summary of diverse animal
models used for SARS-CoV-2 infection, encompassing NHPs,
ferrets, hamsters, and a variety of mouse models, each with
unique attributes and applications. Moreover, in this review, we
delineate the immune response evoked by SARS-CoV-2 infection
in human patients and present an overview of the immune
response characteristics in different animal models of SARS-CoV-2
infection. Finally, we compared the pulmonary tissue transcrip-
tomic data from diverse animal models with those from deceased
COVID-19 patients. Our analysis revealed that the severe K18-
hACE2 mouse model and the mouse-adapted strain MASCp36-
infected mouse model demonstrated the greatest resemblance in
terms of transcriptome data to that of deceased COVID-19
patients. However, there are still several research gaps.

1. To date, most animal models, with the exception of mouse
models, mimic the mild form of COVID-19. However, due to
the complexity of the human immune system compared to
murine models, developing nonhuman primate models of
severe pneumonia is necessary to better elucidate the
immunoregulatory mechanisms involved in severe COVID-
19 pneumonia.

2. The presence of local immune agents in the lungs and
respiratory mucosal immunity, as well as the interaction of
these agents with the systemic immune response, should be
thoroughly investigated in animal models.

3. Animal models should be utilized to investigate the
threshold of immune protection, specifically the level of
immune response required to protect against SARS-CoV-2
infection, encompassing both the humoral immune
response and the T-cell response.

4. Emphasizing the current gap in multiomics research related
to COVID-19 and animal models is crucial. A more
comprehensive investigation of multiomics data types,
including bulk and single-cell datasets and those covering
a wider range of tissue types, is necessary. Conducting
thorough analyses is essential for improving model selection
criteria and interpreting results, thereby ultimately advan-
cing our understanding of the immune response to COVID-
19.

5. Patients with preexisting comorbidities exhibit heightened
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Fig. 1

Table 3. The data sources used for transcriptomic analysis
Model Model severity Tissue Sampling timepoint Bulk RNAseq data source
Human Severe Lung post-mortem [147]
Rhesus Macaques Mild Lung 14dpi [214]
African Green Monkey Mild BALF 3dpi [59]
Hamster Mild Lung 3dpi [68]
Ferret Mild Lung 2dpi [64]
Mouse MASCp36 Severe Lung 4dpi [98]
Mouse K18-hACE2 Severe Lung 6dpi [215]
Mouse Ad5-hACE2 Mild Lung 2dpi [78]
Mouse AAV-hACE2 Mild Lung 2dpi [94]
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Transcriptomic comparison of COVID-19 patients and animal models. A KEGG enrichment analysis of genes with upregulated

expression in COVID-19 patients and animal models. Differentially expressed genes (DEGs) were computed for each comparison against their
respective controls. Specifically, the genes with upregulated expression were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis using clusterProfiler [216]. B For the purpose of similarity comparison, the KEGG enrichment results were dichotomized
based on significance (P < 0.05 represented as 1, and P > 0.05 represented 0). Subsequently, Pearson correlation coefficients were calculated
for the dichotomized matrix and visualized using ggplot2

symptom severity upon infection, yet our understanding of
the mechanisms by which comorbidities affect SARS-CoV-2
infection is limited. Therefore, developing animal models
that recapitulate the influence of comorbidities on SARS-
CoV-2 infection is imperative.

6. However, further research using animal models is needed to
investigate the mechanisms of age-related severe COVID-19
and to develop corresponding interventions.

7. Investigating the potential risk of vertical transmission of
SARS-CoV-2 in animal models, as well as the effects of
maternal vaccination during pregnancy on both the mother

and fetus, is imperative.

8. Investigating the long-term effects of prior COVID-19
infection on the immune system in animal models, including
potential induction of autoimmunity and allergic reactions
and impact on host resistance to other pathogen infections,

is essential.
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