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Abstract
Motivation: Large-scale prediction of drug–target affinity (DTA) plays an important role in drug discovery. In recent years, machine learning algo-
rithms have made great progress in DTA prediction by utilizing sequence or structural information of both drugs and proteins. However,
sequence-based algorithms ignore the structural information of molecules and proteins, while graph-based algorithms are insufficient in feature
extraction and information interaction.

Results: In this article, we propose NHGNN-DTA, a node-adaptive hybrid neural network for interpretable DTA prediction. It can adaptively ac-
quire feature representations of drugs and proteins and allow information to interact at the graph level, effectively combining the advantages of
both sequence-based and graph-based approaches. Experimental results have shown that NHGNN-DTA achieved new state-of-the-art perfor-
mance. It achieved the mean squared error (MSE) of 0.196 on the Davis dataset (below 0.2 for the first time) and 0.124 on the KIBA dataset
(3% improvement). Meanwhile, in the case of cold start scenario, NHGNN-DTA proved to be more robust and more effective with unseen inputs
than baseline methods. Furthermore, the multi-head self-attention mechanism endows the model with interpretability, providing new exploratory
insights for drug discovery. The case study on Omicron variants of SARS-CoV-2 illustrates the efficient utilization of drug repurposing in
COVID-19.

Availability and implementation: The source code and data are available at https://github.com/hehh77/NHGNN-DTA.

1 Introduction

Drug discovery is a time consummation and tremendous eco-
nomic cost task (Dickson and Gagnon 2004). It is usually car-
ried out through high-throughput screening in vitro
experiments. However, those methods consume a lot of money
and are constrained by human abilities, making it impossible to
screen completely from large-scale drug databases (Li et al.
2022). Identifying novel drug–target affinity (DTA) is a crucial
stage for drug discovery (Zheng et al. 2020). The DTA predic-
tion based on machine learning (ML) can accelerate the process
of drug discovery and reduce money consumption (Schneider
2018, Dara et al. 2022).

Before ML-based methods, DTA prediction methods were
based on molecular docking and molecular dynamics simula-
tions (Singh et al. 2022, Du et al. 2023). These methods rely
on high-precision 3D structures of molecules and proteins
(Yang et al. 2022), so they are time-consuming or even unus-
able when the 3D structures of proteins are unknown
(Dhakal et al. 2022).

The ML model predicts the interaction activity score using
only the text information of drugs and proteins, reducing the
cost of drug discovery, expanding the search space, and
avoiding missing potential candidates through in silico predic-
tion. It aims to predict the interaction activity score in silico
and only uses the text information of drugs and proteins.
Small drug molecules are usually characterized by a simplified
molecular input line entry system (SMILES) (Weininger
1988), which is a specification that explicitly describes the
molecular structure with ASCII strings. The DTA reflects the
degree of interaction between drug–protein (DP) pairs, which
is usually expressed by dissociation constant (Kd), inhibition
constant (Ki), or half maximum inhibition concentration
(IC50). IC50 depends on the concentration of the target and li-
gand. A low IC50 value indicates strong binding, while the
pIC50 is the negative logarithm of IC50. Although there are al-
ready deep learning frameworks that can predict protein
structures with high accuracy (Jumper et al. 2021, Baek et al.
2021). Meanwhile, researchers are also trying to use 3D
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structures for drug discovery subtasks, such as molecular
properties (Liu et al. 2022) and drug–drug interaction predic-
tion (He et al. 2022). However, they still consume a lot of
computational resources and fail to effectively capture the key
information required for DTA prediction: the position of DP
interaction pockets and connected edges. Therefore, ML-
based DTA predictions still do not use the 3D structure of
drugs and proteins.

Currently, ML-based DTA predictions are mainly divided
into two schemes: sequence-based and graph-based methods.
Sequence-based methods take text embeddings of small drug
molecules and proteins as output and use convolutional neu-
ral networks to predict DTA. However, sequence-based DTA
prediction methods only take one-dimensional sequence infor-
mation as input, ignoring the structural features of drugs and
proteins. To solve this problem, graph-based methods have
gradually captured scholars’ attention. GraphDTA (Nguyen
et al. 2021a) pioneered the introduction of Graph Neural
Networks (GNNs) into DTA prediction, where drug molecu-
lar graphs were used as drug representations. However, they
still treated proteins as one-dimensional sequences. Then, to
make full use of the structural information of proteins,
DrugVQA (Zheng et al. 2020) constructs a protein graph us-
ing the contact map, and treats amino acids as nodes of the
protein graph. However, current graph-based approaches
treat drugs and proteins as separate graphs, where their fea-
tures are usually only extracted by GNNs. It is worth noting
that the node features in the drug and protein graphs are only
artificially selected for some atomic and amino acid proper-
ties, thus making the DTA model lack generalization.

To address this problem, we proposed NHGNN-DTA, a
node-adaptive hybrid graph neural network (HGNN) for in-
terpretable DTA prediction. It includes a sequence-based
adaptive feature generator and a graph-based HGNN that
mixes drug and protein graphs. As shown in Fig. 1,
NHGNN-DTA generates node features for drugs and

proteins, improving generalization by avoiding manual fea-
ture selection. We construct HGNN to combine drug and
protein graphs, achieving graph-level interaction. The feature
generator obtains atomic and amino acid node features, and
we use a central node and LayerNorm layer to address feature
drift. Specifically, the feature generator obtains the latent fea-
tures of atomic nodes in the drug graph and amino acid nodes
in the protein graph, where we constructed a well-designed
atomic tokenizer and central node to form the HGNN. To
solve the feature drift problem, we have adopted LayerNorm
layer and interval update method to ensure training conver-
gence and feature normalization. In summary, the model com-
bines the advantages of sequence-based and graph-based
methods to not only adaptively obtain drug and protein char-
acterization, but also fully utilize the structural information of
drugs and proteins.

Through extensive comparative experiments on two well-
known benchmark datasets, Davis (Davis et al. 2011) and
KIBA (Tang et al. 2014), NHGNN-DTA achieved a new
state-of-the-art (SOTA) performance in DTA prediction.
Under the more realistic three cold-start divisions, NHGNN
showed superiority to the SOTA model for all metrics in both
datasets. Moreover, we have conducted elaborate ablation
studies to prove the necessity of each component of
NHGNN-DTA. In addition, visualization of drug and protein
weights for some examples confirms that NHGNN-DTA suc-
cessfully captures the proven interactions. The results demon-
strate that NHGNN-DTA has strong interpretability and
potential to explore unknown DTA.

2 Related works
2.1 Sequence-based DTA prediction

DeepDTA (Öztürk et al. 2018) firstly uses two independent
CNN to extract the features of drug SMILES and protein
sequences to achieve affinity prediction. MT-DTI (Shin et al.
2019) firstly introduces the attention mechanism (Vaswani
et al. 2017) for drug representation, which improves the DTA
prediction performance and explainability. rzMLP (Qiu et al.
2021) uses the global feature aggregation as features, and
uses gMLP aggregated features and ReZero layers to smooth
the training process for learning complex global features.
EnsembleDLM (Kao et al. 2021) adopts an ensemble learning
method to aggregate predictions with multiple sequence infor-
mation to improve the accuracy of DTA predictions.
FusionDTA (Yuan et al. 2022) uses BiLSTM (Graves et al.
2013) and attention mechanism to process sequence features
as language models.

2.2 Graph-based DTA prediction

MGraphDTA (Yang et al. 2022) utilizes a multi-scale graph
neural network to capture the information on drug substruc-
ture. GEFA (Nguyen et al. 2021b) characterizes the structural
information of proteins through contact maps, in which an at-
tention mechanism is also introduced to enable interactions
between drugs and protein amino acid nodes. These methods
select certain properties of drugs and proteins as node fea-
tures, such as atom type, implied valence, and atomic number.
Compared to sequence-based methods, graph-based methods
focus on building the structure of drug and protein graphs
and obtaining internal interactions. However, due to the in-
consistent properties of proteins and drugs, graph-based
methods can neither construct drugs and molecules in a

Figure 1. The flowchart of NHGNN-DTA for drug design. First, the graphs

of drugs and proteins and the features of drug atoms and protein amino

acids are obtained through graph and text encoding. The text embeddings

are fed into the adaptive feature generator, processed through the

tokenizer, BiLSTM and LayerNorm layers, and fed into the multi-head self-

attention layer, which outputs sequence-based DTA predictions and

interpretability. During this process, the feature generator adaptively

obtains normalized node feature updates. We combine the graphs of

drugs and proteins into a hybrid graph with a unique central node, and

blend in adaptive node features, which are then fed into a multilayer GIN

to obtain graph-based DTA predictions. Finally, the sequence-based and

graph-based prediction results are integrated to obtain the final DTA

prediction.
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graph, nor realize the DTA information interaction at the
graph level.

3 Materials and methods

This study aims to adaptively generate features of drug atoms
and protein amino acids and construct graph structures contain-
ing atoms and amino acid nodes to predict DTA. To this end,
we propose NHGNN-DTA, an ensemble neural network frame-
work for adaptively generating graph node features, which con-
sists of a node feature generator and HGNN. The flowchart of
NHGNN-DTA is shown in Fig. 2. The node feature generator
encodes the SMILES of drugs and sequences of proteins, and
obtains the features of the corresponding nodes. In HGNN, the
input graph contains amino acid and drug atom nodes, and the
DTA predictions are output through a multilayer graph isomor-
phism network (GIN) (Xu et al. 2019).

3.1 Adaptive feature generator

Previous graph-based methods manually set node features
based on prior knowledge, which may be limiting. In this
study, we use a sequence-based approach to adaptively con-
struct amino acid and atomic node features and apply them to
downstream HGNN, which allows for more flexibility. In the
sequence-based DTA prediction method, we first encode the
SMILES of the drug and the sequence of the protein. To ob-
tain the corresponding embedding for each atom in the drug,
we specifically design a tokenizer, which is encoded at the
atomic level, and thus ensure the embedding corresponds to
an atom or chemical bond. As shown in the upper part of
Fig. 2, we use BiLSTM as the main feature generator back-
bone. It can efficiently extract SMILES and protein sequence
features of drugs simultaneously. We use two independent
BiLSTMs to extract features from the drug and protein
embeddings obtained by the tokenizer as follows:

ðh1;h2; . . . ; hmÞ ¼ BiLSTMðtokenizerðtextÞÞ; (1)

where hi represents the output of BiLSTM, and text represents
SMILES of drugs and sequences of proteins.

To obtain an efficient feature representation, we need to ex-
tract the features obtained by BiLSTM through a sequence-
based method, so we transfer the drug and protein features
into a linear attention layer. The computation of linear atten-
tion can be described as:

LinearAttentionðW; hiÞ ¼
exp Whiffiffiffiffi

dk

p
� �

Pm
j¼1

exp Whiffiffiffiffi
dk

p
� � ; (2)

where W 2 R1�f is the attention weight matrix, while dK is
the normalization parameter.

In addition, to enrich the diversity of attention, we use the
multi-head attention mechanism as follows:

Od ¼MultiheadAttnðhdÞ;
Op ¼MultiheadAttnðhpÞ: (3)

Then we get the corresponding outputs for drugs and pro-
teins: Od and Op. To improve DP pair interactions at the se-
quence level, we concatenate the outputs of the two linear
attention. The concatenated vectors are then further transmitted
to the total linear attention layer to realize the information inter-
action between drugs and proteins. The specific operation can
be expressed as:

Ocon ¼MultiheadAttnðConcatðhd;hpÞÞ: (4)

Figure 2. Overview of the NHGNN-DTA framework. The adaptive feature generator is shown in the upper part of the figure. It is designed to generate

high-dimensional feature representations of amino acids and atoms. It obtains a good feature representation through a multi-head attention mechanism in

the pre-training stage and then dynamically and intermittently transfers the normalized features to the HGNN. As shown in the lower part of the figure,

HGNN realizes graph-level information interaction through the only central node “C.” In the joint training of the feature generator and HGNN, the features

of the hybrid graph are adaptively obtained for further optimization. Finally, the predictions of the DTA are jointly output.
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Finally, we feed the fusion output to the fully connected
layer to get the DTA predictions Opre as follows:

Opre ¼ FCðConcatðOD;OP;OconÞÞ: (5)

NHGNN-DTA uses a sequence-based feature generator
to extract sequence information of DP pairs, and the
performance of the HGNN model depends on the feature
extractor’s output. To ensure quality, the feature generator is
pre-trained before HGNN training.

3.2 Hybrid graph neural network

This study aims to create a hybrid graph with both amino
acid and atomic nodes, allowing for interaction between drug
and protein graphs. Previous methods ignore DP interactions,
but the hybrid graph addresses this issue. A suitable method is
needed to construct HGNN for DTA. To this end, we need to
find a suitable method to construct HGNN for DTA. Suppose
the graph structure of drugs and proteins is expressed as
G 2 rl�l, where l is the length of sequence or SMILES, Gij

equals 1 when i is in contact with j node. For the drugs graph,
we use RDKit (Landrum et al. 2013) to obtain the chemical
bond interactions between atoms as the edges of the graph
structure to construct the drug molecular graph Gd. To con-
struct the protein graph, we use pconsc4 (Michel et al. 2019)
to generate the distance matrix between the residues in the
protein. Then, by setting a distance threshold, two residues
with a distance smaller than this threshold are regarded as
contacts to obtain a contact map, which is regarded as a pro-
tein graph Gp. Then the drug graph Gd and the protein graph
Gp can be fused into a hybrid graph Gh as follows:

GH ¼ Gp 0
0 Gd

� �
(6)

However, proteins and drugs are still isolated and cannot
interact in Gh. Therefore, we design a special central node to
connect the nodes of Gd and Gp as a bridge for information
exchange, as shown in the lower part of Fig. 2. In this way,
the updated mixed graph GH0 is expressed as:

GH0 ¼
Gp 0 1
0 Gd 1
1 1 1

2
4

3
5 (7)

To enable message passing in the graph structure, each
node needs a feature vector to represent itself. We obtain drug
and protein embeddings through a sequence-based feature
generator with BiLSTM outputs.

There are no specific embeddings corresponding to the fea-
tures of the central node. According to our design, this central
node should be able to characterize the overall properties of
drugs and proteins. Therefore, we choose the embeddings spe-
cially marked “[CLS]” at the beginning of the SMILES and se-
quence embedding as the features of the central node. It is
designed to capture the global representation of the input se-
quence. Since the features of the drug hd and the protein hp in
the feature generator have the same dimension, we can di-
rectly use the average of two “[CLS]” embeddings as the fea-
ture of the central node. Thus, the central node may have
features that can represent the whole hybrid graph.

Then, we use multilayer GIN for the message passing of the
hybrid graph as follows:

Og ¼ GINðGH0 Þ: (8)

GIN is based on the Weifeiler-Lehman test. Due to injective
aggregation, GIN approximates the maximum discriminative
power of GNN, described as follows:

hk
v ¼ hhðð1þ �Þhk�1

v þ
X
j2Ni

hk�1
j Þ; (9)

where hh is an injective function such as a multilayer percep-
tron, � is an artificial hyperparameter, and Ni is the set of
neighborhood nodes of node i.

3.3 Adaptive feature training

We also propose an adaptive feature training strategy to over-
come the difficulty of GNN in expressing conformational
changes of proteins and ligands during the interaction. This
strategy adjusts node features to ensure that each node
obtains neighborhood information. Meanwhile, we introdu-
ces an adaptive feature generation mechanism to fit optimal
features and balance the contributions of the feature genera-
tor and HGNN. The detailed design is described in the
Supplementary Section S1.1.

3.4 SMILES tokenizer

Previous methods for predicting DTI used SMILES as input,
but standard word segmentation methods can lead to the
over-segmentation of atoms, destroying the molecule’s infor-
mation. To address this, an atomic-level tokenizer is designed
using RDKit to get all-atom categories in the dataset and re-
cord their positions in each SMILES. This allows for the ex-
traction of molecule features corresponding to embedding
features from the drug features obtained from BiLSTM. Node
features of each atomic node are obtained for HGNN. This
ensures that each atom in the drug has a one-to-one node fea-
ture by the feature generator. The detailed design is described
in the Supplementary Section S1.2.

4 Experiment
4.1 Training setting

Our experiments split the training, validation, and test sets in
a ratio of 8:1:1. Our data splitting was based on the TDC li-
brary (Huang et al. 2022). For the random setting, the Davis
dataset was split into 24 044, 3006, and 3006 samples for the
training, validation, and test sets, respectively, while the KIBA
dataset was split into 94 467, 11 808, and 11 808 samples.
For the cold drug setting, the Davis dataset was partitioned
into 54, 7, and 7 non-overlapping drugs for the training, vali-
dation, and test sets, respectively. Similarly, the KIBA dataset
was partitioned into 1654, 207, and 207 non-overlapping
drugs. Under the cold target setting, the Davis dataset was
split into 354, 44, and 44 non-overlapping proteins for the
training, validation, and test sets, respectively, while the KIBA
dataset was split into 182, 23, and 23 non-overlapping pro-
teins. We repeat all experiments five times by choosing differ-
ent random seeds and reporting the average results.

The detailed training processes and hyper parameters set-
ting are released in Supplementary Section S1.3.

4.2 Dataset and metrics

Our experiments use two well-known benchmark datasets in
the DPI literature: Davis and KIBA. In the experiments, the
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evaluation metrics are mean squared error (MSE), Pearson cor-
relation coefficient, Spearman’s rank correlation coefficient,
concordance index (CI) (Steck et al. 2007), and mean reversion
(r2

m). The detailed calculation formulas for these metrics and
datasets are released in Supplementary Section S1.4.

5 Result
5.1 Comparison experiment

We first compare with previous SOTA methods for DTA pre-
diction on Davis and KIBA datasets. Table 1 shows the per-
formance comparison between NHGNN-DTA and previous
SOTA methods on Davis dataset. NHGNN-DTA shows the
superiority of the SOTA method on all evaluation metrics,
obtaining an absolute improvement of 0.06 compared to the
SOTA method on the MSE, which means that the predicted
MSE on the Davis dataset drops below 0.2 for the first time.
The results show that the use of feature generators to implic-
itly obtain node features and the use of hybrid graphs to real-
ize the information interaction between drugs and proteins at
the graph level can effectively improve the accuracy of DTA
prediction. The evaluation results on the KIBA dataset show
the same good performance in Table 2. The result on KIBA is
0.04 (3% relative improvement) better than the SOTA
method on MSE. In the Davis dataset, NHGNN outper-
formed the SOTA model in MSE with statistical significance
(Student’s t-test, P< .05). However, the CI and Rm of
NHGNN did not exhibit a significant improvement over the
SOTA model (P> .05). In the KIBA dataset, NHGNN dem-
onstrated superior performance over the SOTA model in both
MSE and the r2

m with statistical significance (P< .05).

5.2 Performance evaluation on more realistic settings

Previous experiments used usually random splits to divide the
training, validation, and test sets. However, a random split set-
ting may lead to overly optimistic results, as it can cause drug
and protein information to leak into the test set (Mayr et al.
2018). For drug discovery purposes, models need to extrapolate
to unseen drugs, unseen proteins, and unseen DP pairs.
Therefore, in the cold-start scenario, we evaluate the perfor-
mance of the DTA model using three new split methods: cold-
start splitting for drugs, cold-start splitting for proteins, and for
both drugs and proteins. Taking the cold start split for drugs as
an example, we divide different drugs into training set, valida-
tion set and test set. That is, the drugs in the test set samples
will not appear in the training set and validation set, and the
training set and validation set are also different. The cold start

for proteins is divided according to different proteins. These
three division methods can better demonstrate the generaliza-
tion of the DTA model and meet the actual situation of the
DTA model in the process of new drug discovery. We compare
the performance of NHGNN-DTA and previous SOTA meth-
ods on the Davis and KIBA datasets in cold-start scenarios for
drugs and proteins. For a fair comparison, the splits for all
methods are consistent. Experimental results for cold start sce-
narios are shown in Tables 3 and 4.

In the Davis dataset, our model improved metrics by an av-
erage of 4%, 6%, and 8% for the three cold start settings. On
the KIBA dataset, the average improvement was 7%, 12%,
and 8%. NHGNN exhibited a statistically significant im-
provement over the SOTA model in all metrics under three
cold start scenarios in both the Davis and KIBA datasets
(P< .05). Compared with previous methods, we specifically
use a feature generator to obtain high-dimensional features of
drug and protein nodes instead of manually setting atomic
and protein features, which may be the reason for the stronger
generalization of NHGNN-DTA. The features obtained by
the feature generator can better characterize drugs or proteins
that were not encountered during training.

5.3 Ablation study

We did ablation experiments on NHGNN-DTA’s components
to see which ones contribute the most to its predictive ability.
We tested the feature generator, no feature pretraining, no fea-
ture updating, and the full model on the Davis dataset,

Table 1. The performance comparison between NHGNN-DTA and other

SOTA models on the Davis dataset.a

Method MSE # CI " r2
m "

DeepDTA 0.261(0.007) 0.878(0.002) 0.63(0.015)
MT-DTI 0.245 0.887 0.665
GraphDTA 0.229(0.005) 0.893(0.002) 0.685(0.016)
GEFA 0.228 0.893
rzMLP 0.205 0.896 0.709
EnsembleDLM 0.202(0.005) 0.907(0.004)
FusionDTA 0.208(0.002) 0.913(0.001) 0.743(0.002)
MgraphDTA 0.207(0.001) 0.900(0.004) 0.710(0.005)
NHGNN(Ours) 0.196(0.004) 0.914(0.002) 0.744(0.003)

a Bold corresponds to the best performance for each metric, and
underline indicates the second best. "/# indicates that the larger/smaller the
metrics, the better the model performance.

Table 2. The performance comparison between NHGNN-DTA and other

SOTA models on the KIBA dataset.

Method MSE # CI " r2
m "

DeepDTA 0.194(0.008) 0.863(0.005) 0.673(0.019)
MT-DTI 0.152 0.882 0.738
GraphDTA 0.139(0.008) 0.891(0.001) 0.725(0.018)
rzMLP 0.142 0.89 0.748
EnsembleDLM 0.138(0.003) 0.895(0.001)
FusionDTA 0.130(0.002) 0.906(0.001) 0.793(0.002)
MgraphDTA 0.128(0.001) 0.902(0.001) 0.801(0.001)
NHGNN(Ours) 0.124(0.002) 0.907(0.001) 0.807(0.002)

Bold corresponds to the best performance for each metric, and underline
indicates the second best.

Table 3. Performance evaluation on more realistic settings of Davis

datasets.

Scenario Method MSE # CI " r2
m "

Cold drug GraphDTA 0.920(0.029) 0.678(0.036) 0.160(0.019)
GEFA 0.847(0.012) 0.709(0.028) 0.182(0.015)
FusionDTA 0.581(0.094) 0.737(0.012) 0.187(0.034)
MgraphDTA 0.563(0.065) 0.729(0.022) 0.192(0.021)
NHGNN(Ours) 0.554(0.091) 0.752(0.017) 0.207(0.030)

Cold target GraphDTA 0.510(0.086) 0.729(0.012) 0.154(0.014)
GEFA 0.433(0.022) 0.759(0.009) 0.289(0.016)
FusionDTA 0.364(0.021) 0.826(0.011) 0.435(0.023)
MgraphDTA 0.359(0.023) 0.813(0.008) 0.425(0.028)
NHGNN(Ours) 0.344(0.029) 0.855(0.016) 0.479(0.021)

All cold GraphDTA 0.968(0.096) 0.579(0.017) 0.026(0.016)
GEFA 0.944(0.092) 0.610(0.029) 0.032(0.022)
FusionDTA 0.876(0.091) 0.645(0.043) 0.072(0.048)
MgraphDTA 0.874(0.090) 0.636(0.021) 0.071(0.041)
NHGNN(Ours) 0.857(0.096) 0.665(0.038) 0.087(0.051)

Bold corresponds to the best performance for each metric, and underline
indicates the second best.
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and found that feature updating was the most important
for HGNN. Additionally, the complete NHGNN-DTA had the
best performance on all metrics, showing the importance
and effectiveness of all components and methods. Results
are in the Supplementary Section S2 and Supplementary
Table S2.

6 Interpretability analysis

Since NHGNN contains an attention mechanism, we can ana-
lyze the attention weights of the final output of the feature
generator Ocon. Since its upstream input contains the feature
of drug hd and protein hp, its attention weights may demon-
strate the interaction of DP pairs. Therefore, we visualize the
central node’s attention weights to represent the contribution
of each amino acid and atom to the final affinity prediction.

The interpretability of NHGNN-DTA can be demonstrated
by the weight analysis of attention. The visualization of the
model’s weights can further explain the DTA predictions,
thereby helping to understand the underlying mechanisms of
drug discovery based on proteins as targets. As cases for
weight visualization, we choose 1OUK and 4XUF in the
Protein Data Bank (PDB) database (Rose et al. 2016), i.e. the
crystal structures obtained from in vitro experiments.

Figure 3 shows the visualization of attention weights for
DP pairs. 1OUK is shown in the upper part of the Fig. 3,
where the protein contact map and corresponding weights are
shown on the left. In the crystal structure, the top 20 residues
of the attention weight are highlighted in red and cyan on the
right, where red is the region of correctly captured residues by
NHGNN-DTA and cyan is the region of the wrongly cap-
tured residue. The L108-G110 and L167-G170 sites of the
protein are in high interest positions, and this number falls in
the docking pocket. In the 3D pose, the confirmed interaction

Table 4. Performance evaluation on more realistic settings of KIBA

datasets.

Scenario Method MSE # CI " r2
m "

Cold drug GraphDTA 0.471 (0.047) 0.713(0.002) 0.342(0.007)
GEFA 0.464(0.032) 0.721(0.003) 0.346(0.006)
FusionDTA 0.429(0.031) 0.748(0.005) 0.364(0.012)
MgraphDTA 0.425(0.047) 0.746(0.002) 0.366(0.016)
NHGNN(Ours) 0.385(0.029) 0.756(0.007) 0.400(0.015)

Cold target GraphDTA 0.469(0.089) 0.610(0.035) 0.368(0.057)
GEFA 0.462(0.091) 0.636(0.037) 0.362(0.052)
FusionDTA 0.439(0.062) 0.685(0.032) 0.390(0.067)
MgraphDTA 0.435(0.055) 0.674(0.028) 0.382(0.047)
NHGNN(Ours) 0.382(0.071) 0.732(0.041) 0.452(0.054)

All cold GraphDTA 0.676(0.113) 0.601(0.030) 0.149(0.067)
GEFA 0.639(0.065) 0.628(0.047) 0.152(0.035)
FusionDTA 0.587(0.086) 0.641(0.023) 0.193(0.053)
MgraphDTA 0.590(0.094) 0.626(0.028) 0.182(0.012)
NHGNN(Ours) 0.565(0.094) 0.649(0.037) 0.218(0.047)

Bold corresponds to the best performance for each metric, and underline
indicates the second best.

Figure 3. Visualization of attention weights for DP pairs. The upper part represents the MAP kinase p38 alpha and its binding ligand pyridinylimidazole

inhibitor (PDB ID: 1OUK), and the lower part represents the protein FMS-like tyrosine kinase 3 protein and its binding ligand quizartinib inhibitor (PDB ID:

4XUF). In the figure, the left is the contact map, where the bottom is the corresponding attention value. On the right are the crystal structure, 2D pose,

and 3D pose of the protein and its ligand-bound state. In the crystal structure, the top 20 residues of the attention weight are highlighted in red and cyan,

with red indicating the correct region captured by the model and cyan indicating the wrong region. 3D pose and 2D pose show confirmed interactions and

interacted residues. The 2D pose also shows the attention weights of the drug highlighted in red, with shades of color representing the magnitude of the

weights.
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residues M109 and D168 received higher weights. Also, the
L129-138L position falls right into another potential pocket.
In addition, the model also erroneously captured the residue
region V273-277A, which is not in the docking pocket. In the
2D pose, the substructure attention value of the drug is
highlighted in red. Meanwhile, the attentional weights of
drugs are mainly focused on atoms 2 and 25, corresponding
to the key atom N that forms interactions with proteins.

The bottom half of Fig. 3 shows the crystal structure of
4XUF, and the protein attention weight was highest at C828-
G831, which is in the docking pocket. However, non-docking
pocket regions of G905 and F906 were incorrectly captured.
The model correctly captured key residues F830 and D829
that interact with ligands. The drug weight was mainly on O
and benzene rings, which correspond to the interacting pro-
tein residues. Although the model miscaptured some pockets,
NHGNN-DTA can still focus on most docking sites and re-
lated drug substructures, indicating its interpretability and
ability to explore potential DTAs.

7 Case study

To further verify the effectiveness of NHGNN-DTA, we ap-
plied this model to the repurposing of antiviral drugs of the

currently circulating SARS-CoV-2 Omicron variants.
Figure 4a illustrates the monitoring of SARS-CoV-2 sample
source variants by the Centers for Disease Control and
Prevention. The proportion of variants of COVID-19 in cases
is changing constantly. As of October 8, 2022, most cases be-
long to five prevailing variants: SARS-CoV-2 Omicron
BA.2.75, BA.4/BA.5, BA.4.6, and BF.7. The above five var-
iants were all derived from the mutation of Omicron BA.2.
Therefore, we analyzed the mutation sites of the five variants
relative to BA.2, as shown in Fig. 4b, we find that most of the
mutation sites are located in the receptor binding domain
(RBD) and its internal receptor binding motif (RBM) region.

Therefore, we selected the RBDs of the above five variants
as targets. The crystal structures of Omicron BA.2.75 and
BA.4/BA.5 were obtained from the PDB database, while the
crystal structures of Omicron BA.4.6 and BF.7 have not been
Publicly available, so modeled by trRosetta server (Du et al.
2021). Both structures were built with restraints from both
DL and homologous templates. Besides, both of the results
confidence of the model is high. The DrugBank database
(Wishart et al. 2018) was used to obtain 2509 FDA-approved
drugs as potential inhibitors waiting for screening. Then, we
used DP pairs as the input of the model. Through NHGNN-
DTA, we predicted the affinities of those drugs to five variants

Figure 4. Flowchart and results of the NHGNN-DTA case study applied to drug repurposing screening of Omicron variants against SARS-CoV-2. (a)

Distribution of variants sequence and reported by the Centers for Disease Control and Prevention National SARS-CoV-2 Strain Surveillance program. It

shows the type of epidemic variants from May 2021 to October 2022, with time on the abscissa and percentage of variants on the ordinate. (b) SARS-

CoV-2 Omicron BA.2.75, BA.4/BA.5, BA.4.6, and BF.7 mutation sites relative to BA.2. The color indicates the corresponding variant contains the mutation.

(c) Sankey diagram of predicted affinity of 5 targets with top 20 FDA-approved drugs. The width represents the magnitude of the predicted affinity. (d)

Visualization of the attention weights of the model when the RBD of 5 variants and Amyl Nitrite are used as the input of the model. The top 10 model

output attention sites are indicated in red, where the sites shown in stick form are the mutation sites of Omicron variant.
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and then selected the drugs with the top 20 predictive affini-
ties. The maximum predicted affinity was obtained between
Amyl Nitrite (id: DB01612) and the five variants, as shown in
Fig. 4c. The model predicted the affinity of Amyl Nitrite for
BA.2.75, BA.4/BA.5, BA.4.6, and BF.7 to be 0.153, 0.071,
0.073, and 0.073 nM, respectively. The predicted results sug-
gest that Amyl Nitrite may be a strong inhibitor of Omicron
and is more effective for the new variants.

Using NHGNN-DTA, we analyzed the mechanism of
AmylNitrite and targets by outputting attention weights of
five target variants. As shown in Fig. 4d NHGNN-DTA cap-
tured two key mutation sites, S477N and E484A, for all tar-
gets, indicating Amyl Nitrate’s potential mechanism on
Omicron variants. The model also successfully identified
other key mutation sites for the variants, such as G446S,
F486V, and L452R, while capturing some sites not belonging
to the variant, such as T478K in BA.2.75, possibly due to sim-
ilar fragments between variants. Overall, the case study dem-
onstrated NHGNN-DTA’s capability to identify target
mutation sites and strong interpretability.

Our selected Amyl Nitrate seems to have a relatively good
affinity for the recently circulating omicron variant of SARS-
CoV-2, and interacts with key mutations of RBM in the RBD
of the Omicron variants. However, in the article, we aim to
develop an efficient computational method for drug repurpos-
ing, so the screened drugs do not represent the actual efficacy.
Specific drug effects require further in vitro assays, in vivo
assays, and clinical trials.

8 Conclusion

In this article, we propose an HGNN that can adaptively gen-
erate features. Unlike sequence-based methods, we exploit
drug and protein structures by constructing hybrid graphs
containing amino acid and atomic nodes. Different from
graph-based methods, this model realizes the adaptive update
of node features by building a feature generator to increase
the information interaction between drugs and proteins at the
graph level. In general, NHGNN-DTA overcomes the prob-
lems that sequence-based methods cannot obtain graph struc-
ture information and graph-based methods cannot construct
suitable node features. It also combines the advantages of the
above two methods. This is the first time the integration of
two DTA prediction methods has been achieved according to
the previous literature review. Extensive experiments show
that NHGNN-DTA achieves significant improvements on
two benchmark datasets compared to recent SOTA methods.
In the scenario of cold start for drugs and proteins, NHGNN-
DTA demonstrated its stronger generalization and robustness.
Through attention visualization and case study, we demon-
strate the substructure information capture ability of the
model. The case study implies that Amyl Nitrite may be a po-
tentially effective drug candidate against SARS-CoV-2
Omicron variants. Future work will focus on generating po-
tential DP pairs to accelerate the process of drug discovery.
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