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1  |  INTRODUC TION

Range expansion is the process by which invasive species spread 
to new regions and environments. This process can be modeled as 
a continuous expanding wave, a series of founder events, or sto-
chastic jumps (Peischl et al., 2016). Each type of range expansion 
leads to characteristic genetic patterns that are also influenced by 

genetic drift and gene flow (Excoffier et al., 2009). Understanding 
the dynamics of range expansion for a given invasive species can 
shed light on their demographic history and may illuminate options 
for preventing future spread.

The Aedes aegypti mosquito (Linnaeus, 1762) is an invasive 
species that has successfully invaded tropical regions around the 
world and is increasingly reported in temperate regions (Kraemer 
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Abstract
The Aedes aegypti mosquito first invaded the Americas about 500 years ago and today 
is a widely distributed invasive species and the primary vector for viruses causing den-
gue, chikungunya, Zika, and yellow fever. Here, we test the hypothesis that the North 
American colonization by Ae. aegypti occurred via a series of founder events. We pre-
sent findings on genetic diversity, structure, and demographic history using data from 
70 Ae. aegypti populations in North America that were genotyped at 12 microsatellite 
loci and/or ~20,000 single nucleotide polymorphisms, the largest genetic study of the 
region to date. We find evidence consistent with colonization driven by serial founder 
effect (SFE), with Florida as the putative source for a series of westward invasions. 
This scenario was supported by (1) a decrease in the genetic diversity of Ae. aegypti 
populations moving west, (2) a correlation between pairwise genetic and geographic 
distances, and (3) demographic analysis based on allele frequencies. A few Ae. aegypti 
populations on the west coast do not follow the general trend, likely due to a recent 
and distinct invasion history. We argue that SFE provides a helpful albeit simplified 
model for the movement of Ae. aegypti across North America, with outlier populations 
warranting further investigation.
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et al., 2015), with a rate of invasion that is expected to accelerate 
with climate change (Iwamura et al., 2020). The global distribution 
of this vector enabled the recent outbreaks of Zika and chikun-
gunya in the Americas (Carlson et al., 2016; Leparc-Goffart et al., 
2014), reemergence of yellow fever in Africa and South America 
(Hamlet et al., 2018), and a dramatic spread and increase of den-
gue cases around the world (Brady & Hay, 2020). Its widespread 
presence in Mexico and the Caribbean perpetuates endemic den-
gue, and its presence in the southern United States poses a public 
health threat.

Aedes aegypti likely arrived in the Americas in the 17th century 
aboard slave ships from Africa, where it rapidly spread throughout 
the continent, as evidenced by outbreaks of yellow fever and den-
gue; see the comprehensive review (Powell et al., 2018). Disease 
outbreaks ranged from the Caribbean to the North Atlantic and 
the southeast United States by the early 1800s (Carrigan, 1959; 
Moreno-Madriñán & Turell, 2018). Dengue made its way into the 
central-south United States in the 1850s (Chandler, 1956), and by 
the 1930s Ae. aegypti spanned much of Texas and coastal Mexico 
(Slosek, 1986). Ae. aegypti became more prevalent and widespread 
in New Mexico around 1994 (Merrill et al., 2005) and in California 
starting around 2013 (Metzger et al., 2017). Taken together, these 
lines of evidence paint a picture of the westward migration of the 
mosquito species.

When a small number of founders emigrate from a larger pop-
ulation, the new population will generally display a reduction in ge-
netic variation relative to the original population that can last for 
many generations—a phenomenon called “founder effect” (Nei et al., 
1975). The serial founder effect (SFE) (spread occurring through a 
series of these founder events) has been famously invoked to de-
scribe the movement of Homo sapiens out of Africa (Henn et al., 
2012; Ramachandran et al., 2005). It has also been used to explain 
the global spread of the malaria parasite that accompanied humans 
out of Africa and the expansion of monarch butterflies across the 
Pacific (Pierce et al., 2014). Although numerous studies have ex-
amined Ae. aegypti invasions, migration, and structure using popu-
lations genetics from around the globe—including North America 
(Gloria-Soria et al., 2016; Kotsakiozi et al., 2018; Pless et al., 2017)—
none have explicitly tested the hypothesis of colonization by SFE.

Here, we asked whether SFE explains the westward spread of 
Ae. aegypti across southern North America. These migrations were 
likely accomplished by a combination of active dispersal and passive 
human-mediated transport (e.g., trucks and ships) (Fonzi et al., 2015; 
Goncalves da Silva et al., 2012; Guagliardo et al., 2014; Medley et al., 
2015). Given an active average lifetime dispersal of <200 m for Ae. 
aegypti (Honorio et al., 2003; Jasper et al., 2019; Reiter, 2007; Russell 
et al., 2005), we predict that short-distance invasions are more com-
mon for both active and passive dispersal due to a higher number 
of introduction events and higher propagule pressure (Sakai et al., 
2001), which is likely to result in colonization via SFE.

To test if Ae. aegypti expansion across North America is consis-
tent with a SFE moving westward, we evaluated our data against 
four expectations:

1.	 Source populations will have the highest number of alleles, 
with genetic diversity decreasing in proportion to the distance 
from the source (Hunley et al., 2012).

2.	 There will be a positive relationship between distance among 
groups and their genetic differentiation (Ramachandran et al., 
2005).

3.	 Following each founding event, the daughter group will carry a 
subset of variation from the parental group (Ramachandran et al., 
2005).

4.	 Demographic inference modeling will support SFE over other 
possible scenarios.

We inferred genetic structure across the region and tested these 
predictions using data from 12 microsatellite loci and single nucle-
otide polymorphism (SNP) array data from 70 North American Ae. 
aegypti populations. Establishing the extent to which Ae. aegypti has 
spread via SFE is important for preventing and detecting future in-
vasions, as well as modifying vector control in response to the move-
ment of pesticide-resistant alleles.

2  |  MATERIAL S AND METHODS

2.1  |  Mosquito collection

Our analysis includes 70 Ae. aegypti populations across continental 
North America and the eastern Caribbean (Figure 1, Table 1 and 
Table S1). Microsatellite and SNP genotypes for most populations 
in this study have been reported in Evans et al. (2015), Gloria-Soria 
et al. (2014), Gloria-Soria et al. (2016), Kotsakiozi et al. (2017), Pless 
et al. (2017), Pless et al. (2020), Pless et al. (2021) and Saarman et al. 
(2017). New data presented here include microsatellite genotypes 
from (1) La Altagracia, Dominican Republic, (2) San Jose de Ocoa, 
Dominican Republic, (3) St. Croix, USVI, and (4) St. Thomas, USVI, 
and genome-wide SNP data for (1) St. Thomas, USVI, (2) Alamagordo, 
NM, USA, (3) Las Cruces, NM, USA, (4) Lubbock, TX, USA, and (5) 
Bexar, TX, USA. The new populations genotyped fill important re-
gional gaps, particularly in the Caribbean and the central United 
States. The remaining gaps in samplings, such as those between the 
panhandle of Florida and New Orleans, are due to the absence of Ae. 
aegypti in recent years.

The mean sample size is 33.8 for microsatellites and 10.4 for 
SNPs. The year range of sampling collections is 2006–2018 (with 
>75% of the samples collected in 2014 or later). All mosquito sam-
ples were collected as adults or eggs from traps and were shipped 
as adults to Yale University for analysis. No more than six individuals 
were used from a single ovitrap to minimize sampling relatives.

2.2  |  DNA extraction and genotyping

The microsatellite dataset includes 2132 individuals from 63 pop-
ulations genotyped at 12  loci (Brown et al., 2011; Slotman et al., 
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2007). The SNP dataset includes 373 individuals from 36 popula-
tions genotyped at ~20,000 SNPs with the Axiom_aegypti array 
(Evans et al., 2015). Microsatellites are appropriate for unbiased 
genetic diversity estimates and demographic inference analysis due 
to their multiallelic, highly polymorphic nature, and complete allele 
frequency spectra. Additionally, their low cost facilitates the gen-
eration of large global and local reference databases. In contrast, 
the larger number of markers from the Axiom_aegypti array may 
provide higher fine-scale resolution for population structure, par-
ticularly when populations are of recent origin or when gene flow 

is significant (Gloria-Soria et al., 2018). However, the ascertainment 
bias in the design of the SNP array is likely to affect measurements 
of genetic diversity and may also impact demographic analysis, 
which uses allele diversity spectrum to evaluate the likelihood of dif-
ferent scenarios. Therefore, the two sets of genetic markers provide 
complementary advantages and are useful for different analyses.

Whole genomic DNA was extracted from individual mosquitoes 
using the Qiagen DNeasy Blood and Tissue kit according to manufac-
turer instructions, including the optional RNAse A step. Individuals 
were genotyped for 12 microsatellites as in Gloria-Soria et al. (2016). 

F I G U R E  1 (a) Map showing locations for each Aedes aegypti sampling site included in this study, colored by regional group. The inset 
on the bottom left shows southern California. Mean allelic richness estimated from microsatellites by rarefaction of all sites within each 
region is shown in the boxes. (b) STRUCTURE plot of the complete microsatellite dataset with K = 4 number of clusters. Each column is an 
individual, and the heights of the color bars represent the proportion of ancestry that came from each of the four inferred clusters (yellow, 
light blue, red, and dark blue). The outlier (red) in southern California is Exeter County. The longitude of each site is plotted against its mean 
observed heterozygosity (c), expected heterozygosity (d), and allelic richness estimated by rarefaction using microsatellite data (e). Colors in 
the map (a), above the STRUCTURE plot (b), and in the diversity plots (c–e) are consistent and correspond to regional groups

(a)

(b)

(c) (d) (e)
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TA B L E  1 Aedes aegypti populations included in this study

Pop. number Population Abbrev. Region name Year N1 N2

1 St. Vincent SV Caribbean 2015 0 12

2 Trinidad TRI Caribbean 2014 0 12

3* St. Croix, USVI StX Caribbean 2017 32 0

4*+ St. Thomas, USVI StT Caribbean 2017 36 10

5 Patillas, Puerto Rico PR Caribbean 2014 40 12

6* La Altagracia, DR Alt Caribbean 2018 31 0

7* San Jose de Ocoa, DR Oco Caribbean 2018 39 0

8 Washington, D.C. WashDC Southeast 2014 0 11

9 Palm Beach County, FL, USA PBC Southeast 2013 40 12

10 Miami, FL, USA Miami Southeast 2011 40 8

11 Rio, FL, USA FLO Southeast 2014 40 0

12 Melbourne, FL, USA Mel Southeast 2014 40 12

13 Conch Key, FL, USA Conch Southeast 2006 40 0

14 Vaca Key, FL, USA Vaca Southeast 2009 40 0

15 Daytona Beach, FL, USA DB Southeast 2017 40 12

16 St. Augustine, FL, USA StA Southeast 2017 40 0

17 Orlando, FL, USA Orl Southeast 2014 32 11

18 Barberville, FL, USA Bb Southeast 2017 40 11

19 North Key West, FL NK Southeast 2013 0 11

20 Key West, FL, USA KW16 Southeast 2016 40 12

21 Fort Myers, FL, USA FM Southeast 2014 37 12

22 Tampa, FL, USA Tam Southeast 2014 40 12

23 Sarasota, FL, USA Sar Southeast 2014 39 12

24 Muscogee, GA, USA 18 and 9 Southeast 2011 40 0

25 New Orleans LA, USA NO and NO2 Southeast 2012 40 10

26 Tapachula Norte, CHP, MEX TapaN Central 2012 0 12

27 Houston, TX, USA Houston and H11 Central 2011 19 8

28 Dallas, TX, USA Dall Central 2017 40 0

29 Ellis, TX, USA El Central 2017 40 0

30 Nueces, TX, USA Nuec Central 2017 40 0

31 Cameron, TX, USA Cam Central 2015 40 0

32 Travis, TX, USA Tr Central 2017 40 0

33 Hidalgo, TX, USA Hid Central 2017 40 0

34+ Bexar, TX, USA Bex Central 2017 18 8

35 Amacuzac, Morelos, Mexico Amac16_P Central 2014 0 12

36 Nuevo Leon, MEX NL Central 2017 10 0

37+ Lubbock, TX, USA Lub Central 2017 14 8

38 Carlsbad, NM, USA Car Central 2017 17 0

39 Roswell, NM, USA Ros Central 2017 39 0

40+ Alamagordo, NM, USA Ala Central 2017 35 4

41 Albuquerque, NM, USA Alb Central 2018 22 0

42 Juarez, MEX Juar Central 2017 40 0

43 Sunland Park, NM, USA SP Central 2017 37 0

44+ Las Cruces, NM, USA LC18 Central 2018 40 6

45 Truth of Consequences, NM, 
USA

TC Central 2017 17 0
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Four loci (A1, B2, B3, and A9) are trinucleotide repeats, and eight 
(AC2, CT2, AG2, AC4, AC1, AC5, AG1, and AG4) are di-nucleotide 
repeats. Any individuals that were genotyped at fewer than 10 loci 
were excluded from the analysis. We include only populations with 
a minimum of 10 individuals and arbitrarily selected 40 individuals 
from sites with more than 40 samples to control for unequal or low 
sample size (Puechmaille, 2016).

Individuals were genotyped using Axiom_aegypti, a high-
throughput genotyping chip that has 50,000 probes (Evans et al., 
2015). Genotyping was conducted by the Functional Genomics Core 
at the University of North Carolina, Chapel Hill. To prune the SNP 
dataset, we first excluded 2166 SNPs that failed a test of Mendelian 
inheritance (Evans et al., 2015). Since some analyses can be con-
founded by SNPs in linkage disequilibrium (Alexander et al., 2009), 
we excluded tightly linked SNPs with the plink command “--indep 
75 kb 50 2” (Purcell, 2016; Purcell et al., 2007). We also excluded any 
SNPs that were genotyped in <90% of the individuals and those with 
a minor allele frequency of <5%, resulting in 20,003 SNPs remaining 
for analysis.

All microsatellite data are available in Dataset S1, and all SNP 
data are available in Dataset S2. Additionally, the data can be ac-
cessed on Dryad (https://doi.org/10.5061/dryad.5x69p​8d5j) and 
VectorBase (VBP0000801).

2.3  |  Inferring geographic regions based on 
genetic structure

All microsatellite loci were tested for within-population deviations 
from Hardy–Weinberg equilibrium and for linkage disequilibrium 
among loci pairs using the R package Genepop v. 1.1.4. with 5000 de-
memorizations, 500 batches, and 5000 iterations per batch for both 
tests (Raymond & Rousset, 1995). To correct for multiple testing, a 
Bonferroni correction was applied at the .05 α level of significance.

To establish regional groupings for subsequent analysis, we 
examined population structure using a number of methods. We 
performed principal component analysis (PCA) using the R pack-
age Adegenet v. 2.1.1. (Jombart, 2008) for the microsatellites. 

Pop. number Population Abbrev. Region name Year N1 N2

46 Deming, NM, USA Dem Central 2017 40 0

47 Tucson, AZ, USA TJC2 Southwest 2012 40 12

48 Nogales, Son, MEX Nog Southwest 2013 40 9

49 Hermosillo, Son, MEX Her Southwest 2013 40 0

50 Maricopa County, AZ, USA Az Southwest 2013 39 0

51 Las Vegas, NV, USA LV Southern CA 2017 31 0

52 El Centro, CA, USA ElC Southern CA 2016 40 0

53 Coachella, CA, USA Coa Southern CA 2017 27 0

54 Tijuana, BCN, MEX Tj Southern CA 2013 20 10

55 San Diego, CA, USA Cw and SY Southern CA 2015 40 12

56 San Bernardino, CA, USA SBern Southern CA 2017 40 0

57 Mission Viejo, CA, USA MV Southern CA 2015 40 12

58 Montclaire, CA, USA Mc Southern CA 2016 30 0

59 Orange, CA, USA Or Southern CA 2015 13 0

60 Santa Ana, CA, USA SA17 Southern CA 2017 33 0

61 Anaheim, CA, USA Ana_LC and Ana Southern CA 2015 31 0

62 Garden Grove, CA, USA GG Southern CA 2015 29 12

63 La Habra, CA, USA LH Southern CA 2017 13 0

64 Rosemead, CA, USA Ro Southern CA 2017 40 0

65 Los Angeles, CA GLA Southern CA 2014 0 6

66 Exeter, CA, USA Exe Southern CA 2014 23 12

67 Clovis, CA, USA Clovis and Cal Northern CA 2013 40 6

68 Fresno, CA, USA Fres Northern CA 2015 27 12

69 Madera, CA, USA MAD Northern CA 2015 40 12

70 San Mateo, CA, USA SM and SM2 Northern CA 2013 22 8

Note: Population number corresponding to Figure 1, population name, population abbreviation, region name, year sampled, the sample size for 
microsatellite data (N1), and sample size for SNP data (N2). New microsatellite data are indicated with an asterisk (*) and new SNP data are indicated 
with a cross (+).
Abbreviations: DR, Dominican Republic; MEX, Mexico; USA, United States of America; USVI, United States Virgin Islands.

TA B L E  1 (Continued)

https://doi.org/10.5061/dryad.5x69p8d5j
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We conducted 20 independent runs of STRUCTURE v. 2.3.4 for 
K = 1–10 (Pritchard et al., 2000) using the microsatellite data and 
600,000 generations, with the first 100,000 discarded as burn-in. 
We visualized the STRUCTURE results using the programs Clumpak 
and DISTRUCT v.1.1 (Kopelman et al., 2015; Rosenberg, 2004), 
and we inferred the optimal value of K using relevant guidelines 
(Cullingham et al., 2020; Earl, 2012; Evanno et al., 2005). We re-
peated these analyses for the Caribbean microsatellite dataset (40 
independent runs of STRUCTURE for K = 1–6), and for the Central 
and Southwest microsatellite datasets combined (20 independent 
runs of STRUCTURE for K = 1–10) to further explore the regional 
genetic structure of the two regions that include new populations. 
Additionally, we evaluated genetic structure within the Caribbean 
using a multivariate approach, Discriminant Analysis of Principal 
Components (DAPC), on the microsatellite data using the Adegenet 
package (Jombart, 2008).

A PCA for the complete SNP dataset was generated with Plink 
v.1.9 (Purcell, 2016; Purcell et al., 2007). Additionally, we ran 5 inde-
pendent runs in fastSTRUCTURE 1.0 (Raj et al., 2014) using the SNP 
dataset for K = 1–10, and visualized the results using Clumpak and 
DISTRUCT v.1.1 (Kopelman et al., 2015; Rosenberg, 2004).

Based on the results from our genetic clustering analysis, we 
grouped the samples into six regions for further analyses (Table 1, 
Figure 1): Caribbean contains the Caribbean; Southeast contains 
Florida, Louisiana, Georgia, and Washington D.C.; Central contains 
eastern Texas, western Texas, New Mexico; Southwest contains 
Arizona; Southern CA contains southern California and Nevada; and 
Northern CA contains northern/central California.

2.4  |  Prediction 1: Genetic diversity decreases 
toward the west

Observed heterozygosity (HO), expected heterozygosity (HE), the 
inbreeding coefficient (FIS), and a number of private alleles (alleles 
found in no other population) were calculated from the microsat-
ellite dataset for each population using GenAlEx v. 6.51 (Peakall & 
Smouse, 2006), and allelic richness was estimated by rarefaction 
(N = 30) using the software HP-Rare v. 1.0 (Kalinowski, 2005). These 
measurements were not calculated for the SNP dataset due to as-
certainment bias in the design of the SNP array (Evans et al., 2015).

To assess if genetic diversity decreased westward, as expected 
from SFE, we calculated linear regressions for longitude versus 
the different genetic diversity metrics (observed heterozygosity, 
expected heterozygosity, and allelic richness) in R v. 4.0.2 (R Core 
Team, 2020). To determine whether Florida or the Caribbean was 
the more likely source of the expansion, we also calculated linear 
regressions for observed heterozygosity, expected heterozygosity, 
and allelic richness of each population versus (1) their distance to 
Florida and (2) their distance to the Caribbean.

We assessed regional genetic diversity by averaging the ge-
netic diversity metrics across all the sites within each region. Since 
regional allelic richness and the number of private alleles could be 

biased by the number of individuals in a region, we calculated the ge-
netic diversity measures a second time after combing all individuals 
within each region and then randomly resampling them so that each 
region had the same number of individuals.

2.5  |  Prediction 2: Positive relationship between 
geographic and genetic distance

Using both the microsatellite and SNP datasets, we calculated pair-
wise FST and evaluated significance with 1000 permutations using 
Arlequin 3.5 (Excoffier et al., 2005). We then tested for a relation-

ship between pairwise genetic distance 
(

FST

(1− FST)

)

 and geographic 

distance using a Mantel test with 9999 permutations, and repeated 
the test after excluding known new invasions, defined as popula-
tions that were first detected in 2013 or later (California, Las Vegas 
NV, and Albuquerque NM).

Because clustering and assignment methods may mistake con-
tinuous processes (e.g., isolation by distance, in which there is a 
positive relationship between geographic distance and gene flow 
between populations) for discrete processes, we implemented a 
method called conStruct v. 1.0.4 (Bradburd et al., 2018) using the 
SNP array data. This model-based clustering method uses isolation 
by distance when possible to explain genetic variation. We ran three 
independent runs of the program for K = 1–4 with 1000 iterations 
and the spatial model setting and another three independent runs 
with the non-spatial model setting. We assessed posterior probabil-
ity, Markov chain Monte Carlo (MCMC) performance, and layer con-
tributions to compare the independent runs and identify a putative 
optimal number of layers for each run. The program performs best 
when there are more loci than the number of samples, so it was not 
suitable to run with the microsatellite data.

2.6  |  Prediction 3: Daughter groups nested within 
parental group

To test the hypothesis that daughter groups contain a subset of 
the allelic diversity from parent groups, we created the presence/
absence matrices representing all alleles for each of the 12 micros-
atellites, where regional sites were columns, and the different alleles 
were rows. Microsatellites were used rather than SNPs because the 
latter are biallelic, and thus do not have the broad allele frequency 
spectra required for this type of analysis. To maximize the chance 
of finding a pattern if one existed, we focused on three regions that 
were most likely to display this pattern: Southeast, Central, and 
Southwest. To control for uneven sample size across different popu-
lations, we combined individuals within each region and resampled, 
so each region was represented by the same number of individuals 
before analysis. We calculated the nestedness metric based on the 
overlap and decreasing fill (NODF) for each matrix, in which higher 
scores indicate greater amounts of nestedness (Morrison, 2013), 
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using the R package “RInSp” (Zaccarelli et al., 2013). To compare our 
matrices and their NODF scores with the null expectation, we cre-
ated five control model matrices by shuffling the elements in each 
row using the R package “picante,” specifically the randomizeMa-
trix tool, with 1000 iterations and the null model set as “richness” 
(Kembel et al., 2010).

2.7  |  Prediction 4: Demographic inference 
modeling supports SFE

We performed demographic history analysis using DIYABC-RF 
(Random Forest) v.1.1.1-beta (Collin et al., 2021) on the microsatel-
lite dataset, to avoid possible effects of ascertainment bias on al-
lele frequency spectra derived from the SNP chip selection process. 
The DIYABC-RF approach enables efficient discrimination among 
scenarios and estimation of the posterior probabilities with a lower 
computational burden than classic approximate Bayesian computa-
tion approaches (Collin et al., 2021). The program applies supervised 
machine learning methods to population genetic data for statistical 
inference through the use of a training set. The training set includes 
a given number of datasets simulated under different evolutionary 
scenarios using parameter values drawn from prior distributions. 
Priors were set to be as wide as possible within reason given known 
colonization events (Table S2). Each resulting dataset is then sum-
marized with a set of descriptive statistics. These summary statis-
tics describe genetic variation within populations, between pairs or 
triplets of populations, averaged over loci. The RF algorithm then 
chooses the best scenario from the simulated datasets and charac-
terizes the posterior distribution of parameters of interest under a 
specific scenario and assesses the performance of RF-based infer-
ences in terms of prediction through the computation of error and 
accuracy measurements.

Specifically, we compared SFE scenario—in which Southern CA 
split from Southwest, which split from Central, which split from the 
Southeast—against a scenario where each region diverged from the 
Southeast independently (Figure 2). Each region was represented 

by 158 randomly selected samples, and we performed the analy-
sis in duplicate, using a second random draw from each region. We 
excluded Exeter from Southern California since it is a known out-
lier that likely has a different origin than the other sites in Southern 
California (see Results). To ensure that pooling across populations 
did not bias the outcome, we also repeated the analysis twice re-
placing the regions with single, arbitrarily selected populations from 
each region (Table S2). We ran DIYABC-RF using a training set of 
200,000  simulated datasets. The constructed RF for both model 
choice and parameter estimation used 1000 trees, and the best sce-
nario was selected based on linear discriminant analysis and partial 
least squares regression analysis, in each case. Full parameters and 
priors are listed in Table S2.

3  |  RESULTS

3.1  |  Inferring geographic regions based on genetic 
structure

We first confirmed that our microsatellites behave as independent, 
neutral loci by performing 756 Hardy–Weinberg equilibrium (HWE) 
tests (12  microsatellite loci X 63 populations) and 4158  linkage 
disequilibrium pairwise tests on loci within populations. After ap-
plying a Bonferroni correction (p = .05/number of tests), 13 loci-by-
populations (1.7%) were out of HWE, and there were not enough 
data to determine the p-values for 18 tests. Similarly, 57 loci pairs 
within populations (1.4%) showed significant evidence of being in 
linkage disequilibrium after a Bonferroni correction, and there were 
not enough data to determine the p-values for 127 tests. These ob-
servations, 1.7% and 1.4%, are below the “significance” cutoff of 5%.

To test our hypothesis that Ae. aegypti primarily colonized 
North America through a series of westward founder effects, it is 
useful to represent our 70 populations as major regions defined 
by their geography and population structure. We explored genetic 
population structure using both microsatellites and SNP markers 
and various methods. Using Bayesian clustering with the CV error 

F I G U R E  2 Scenarios tested by DIYABC-RF using microsatellite data. The two trees depict scenarios of Ae. aegypti colonization of 
continental North America. Scenario 1 shows independent invasions from the Southeast with bottlenecks after each lineage division and 
Scenario 2 shows a pattern of serial founder effect moving west from the Southeast, also with bottlenecks. Posterior probabilities (PP) are 
shown for each scenario. Time 0 corresponds to the present (when the samples were collected). Colors for each lineage correspond to Figure 
1, and changes in effective population size (bottlenecks) are shown in gray. Posterior probabilities and divergence times correspond to a 
single run of the model using random draws from each region (Table S2b); results are similar for the other three independent runs (Table S2)
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method (Evanno et al., 2005) for the microsatellite data, we found 
two primary clusters which generally split the west half of North 
America from the east half, with a large transition zone through New 
Mexico and Texas (Figure S1a). At K = 4, the four ancestries corre-
spond generally to 1: Northern California + Central, 2: Southwest, 3: 
Southeast, and 4: Caribbean (Figure 1b). Southern CA has sites that 
are outliers (e.g., Exeter) or appear to show admixture (e.g., Mission 
Viejo), consistent with the complex, recent invasions known to char-
acterize the region (Pless et al., 2020). Bayesian clustering using the 
SNP data reinforced the results from the microsatellites and added 
additional resolution in southern California, for example showing 
that Garden Grove and Mission Viejo each have distinct genetic sig-
natures (Figure 3).

PCA using SNPs showed a similar pattern. The Southeast and 
Caribbean are grouped together on the right of the graph, along 
with Exeter, a known outlier that may represent a third invasion into 
California (Figure S2). Southern California and Southwest clustered 
in the top left, Northern CA was in the bottom right, and Central 
was in the middle. PCA using the microsatellites showed a similar 
pattern but with a higher level of overlap among all the populations 
(not shown). The consistency in the clustering results suggests the 
identified regions could represent major “steps” during SFE coloni-
zation and that subsequent analyses could be performed using these 
groupings.

We further explored the genetic structure within the 
Caribbean and the Southwest, since we have new populations in 
these regions compared to previous publications. The CV error 
method (Evanno et al., 2005) suggested K = 5 for the Caribbean 
microsatellite data (Figure S1e), but K = 3 made the most biologi-
cal sense, showing moderate differentiation among the Dominican 
Republic (DR), United States Virgin Islands (USVI), and Puerto Rico 
(PR) (Figure S1d). DAPC showed a connection between some of 
the samples from Ocoa, DR, and PR (Figure S3). In the Southwest 
and Central, Bayesian clustering at K  =  2 found a strong divide 
between Arizona and New Mexico (Figure S1b); at K = 3 western 
NM (through Alamagordo) separated from more eastern sites in 
New Mexico and Texas (Figure S1c).

3.2  |  Prediction 1: Genetic diversity decreases 
toward the west

The microsatellite data showed that, overall, the highest genetic 
diversity was found in the Southeast, followed by the Caribbean, 
Central, Southwest, Northern CA, and Southern CA (R2 for longi-
tude vs. allelic richness = 0.32, p < 10−8) (Figure 1, Table 2). After 
combining and standardizing the number of individuals per region, 
we found that Southeast and Southern California had the highest 
number of private alleles (alleles found in no other region), followed 
by the Caribbean and Central (Table 2). This is consistent with the 
Southeast having the oldest population and Southern California 
being founded multiple times from different regions. There was a 
stronger correlation between heterozygosity versus distance from 

Florida (R2 =  .53, p < 10−11) than between heterozygosity and dis-
tance from the Caribbean (R2 = .32, p < 10−11).

3.3  |  Prediction 2: Positive relationship between 
geographic and genetic distance

Considering the microsatellite data, the FST (a measure of genetic dif-
ferentiation due to genetic structure) values between all population 
pairs (N = 1953) were 0.13 ± 0.070 (mean ± SD), and all values were 
significantly different than zero at the 0.05 level after correction for 
multiple tests (Table S4). Geographic distance was a significant pre-
dictor of genetic distance (calculated as FST

(1− FST)
) (Mantel R  =  .14, 

p = .024) (Figure 4a). After removing known new invasions from the 
dataset (detected in 2013 or later), the strength of the relationship 
increased (Mantel R =  .52, p < 10−4) (Figure 4b). Similarly, the pair-
wise FST values generated from the SNP data (N  =  630) were 
0.10 ± 0.045 (mean ± SD), and all values were significantly different 
than zero except for the pairs between Madera and San Mateo 
(Table S5). Using the SNP data, there was also a significant correla-
tion between geographic and genetic distance (Mantel R  =  0.23, 
p = .0038) (Figure 4c), and the strength of the correlation increased 
when new invasions were removed (Mantel R  =  .62, p  <  10−4) 
(Figure 4d).

To investigate the effect of continuous processes, namely isola-
tion by distance, on clustering, we ran conStruct for K = 1–4 using 
the SNP dataset. We focus on K = 2 because this model consistently 
produced well-behaved MCMC posterior probability plots, and the 
first two layers contributed most of the variance in the majority 
of the runs (Table S6). The three independent non-spatial models 
produced very consistent results at K  =  2, showing a clear struc-
ture, especially between Florida + Exeter and California (Figure 5 
and Figure S4a). After controlling for the effect of isolation by dis-
tance, the three spatial runs showed significantly less genetic struc-
ture (Figure 5 and Figure S4b), although one run continued to show 
Exeter as a clear outlier (Figure S4c). In all cases, the posterior prob-
ability across MCMC runs was higher for the spatial models than the 
non-spatial models. The non-spatial model showed additional struc-
ture at K = 3 and K = 4 (e.g., differences between the Caribbean 
and continental North America), but again the spatial model at these 
higher K levels showed less structure.

3.4  |  Prediction 3: Daughter groups nested within 
parental group

To evaluate if each putative daughter group contained a subset of 
the diversity in the presumed parent group, we calculated NODF for 
each microsatellite allele for the three regions where we expected 
the larger effect: Southeast, Central, and the Southwest. However, 
nine loci had <4 alleles, an insufficient number to detect nestedness 
patterns (Table 3). Of the three remaining loci, one (AG2) showed 
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evidence of nestedness (NODF score >1SD above the neutral NODF 
scores), and the other two were within 1SD of the neutral model 
(Table 3). Additional analyses using more regions or individual popu-
lations rather than regions did not show significant nestedness.

3.5  |  Prediction 4: Demographic inference 
modeling supports SFE

Using approximate Bayesian computation combined with super-
vised machine learning, we compared two invasion scenarios to test 
whether the data were more consistent with SFE or independent 
invasions from the Southeast (Figure 2). SFE had a higher posterior 
probability (PP  >  0.922 across all four independent runs) than in-
dependent invasions from the Southeast (PP < 0.07 across all four 
independent runs). Under the SFE model and assuming ten genera-
tions/year, we estimated that Southern CA split from Southwest 

~39–66  years ago, Southwest split from Central ~166–207  years 
ago, and Central split from Southeast ~322–345 years ago (Table S2). 
We ran the model twice using randomly selected samples from each 
region and twice using single populations from each region; results 
were similar across the four runs (Table S2).

4  |  DISCUSSION

4.1  |  Regional genetic structure

In this study, we tested whether SFE described the westward spread 
of Ae. aegypti across North America by evaluating the genetic diver-
sity and population structure from a rich dataset of 70 populations. 
We first established relevant regions for analysis based on genetic 
structure; these are the hypothesized “stepping-stone” regions for 
the westward spread of Ae. aegypti. We identified six genetic regions 

F I G U R E  3 Population structure in North America generated by fastStructure using the SNP dataset. Populations are arranged according 
to their longitude (west on the left). Each column is an individual, each color represents an inferred group, and the height of the color bar 
shows the proportion of ancestry that came from the K inferred groups (K = 2 on the top panel and K = 8 on the bottom panel)

TA B L E  2 Genetic diversity of each region calculated with microsatellites

Region Ho ± SDa Hob He ± SDa Heb AR ± SDa ARb
Private 
allelesb

Caribbean 0.55 ± 0.032 0.56 0.56 ± 0.030 0.60 4.21 ± 0.32 6.65 4

Southeast 0.62 ± 0.035 0.62 0.62 ± 0.016 0.65 4.42 ± 0.22 6.89 8

Central 0.54 ± 0.051 0.55 0.56 ± 0.051 0.61 3.97 ± 0.44 6.31 3

Southwest 0.55 ± 0.029 0.57 0.57 ± 0.023 0.60 3.83 ± 0.018 5.23 1

Southern CA 0.47 ± 0.086 0.48 0.47 ± 0.072 0.58 2.99 ± 0.53 6.07 6

Northern CA 0.49 ± 0.015 0.49 0.52 ± 0.023 0.57 3.69 ± 0.37 4.82 0

Abbreviations: Ho, observed heterozygosity; He, expected heterozygosity; AR, allelic richness estimated by rarefaction (n = 30); Private alleles, 
number of unique alleles found only in that region.
aMean of populations within each region.
bIndividuals in each region combined and resampled to standardized size before analyses.



10 of 14  |     PLESS et al.

based on both microsatellites and SNPs that are consistent with pre-
vious work (Gloria-Soria et al., 2016; Kotsakiozi et al., 2018). Broadly, 
we detected two primary clusters in the microsatellite dataset which 
split the eastern populations from the western ones with a large ad-
mixture zone through the Southwest and Central regions (Figure 2a). 
At higher levels of K, additional structure emerged (Figure 2), and 
we found genetic differentiation by geography with some outliers, 

specifically Exeter CA, which clusters with Florida and likely repre-
sents the third invasion into the state (Figure S1). Southern California 
has unusual genetic patterns (e.g., high genetic differentiation and a 
high number of private alleles despite low diversity), as discussed 
elsewhere (Pless et al., 2020). The stability of the regions we identi-
fied is indicated by older allozyme data from parts of the same dis-
tribution using collections from the 1970s and 1980s (Wallis et al., 

F I G U R E  4 Pairwise genetic distance (linearized FST) for pairs of populations as a function of the geographic distance (km) between 
them for (a) all microsatellite data, (b) all SNP data, (c) all microsatellite data excluding known new invasions (California, Las Vegas NV, and 
Albuquerque NM), and (d) all SNP data excluding known new invasions

(a) (b)

(c) (d)

F I G U R E  5 North America population structure (K = 2) generated in conStruct with the SNP dataset using (a) a non-spatial model and (b) a 
spatial model that first attributes genetic variation to isolation by distance where possible

(a) (b)
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1983). In particular, the break between the Southeast and Central 
around the border of Texas and Louisiana was clearly identified in 
these early studies.

We further explored the intra-region structure for the Central 
and Caribbean, since these are the regions where we added new 
genetic data. Bayesian clustering using microsatellites found two 
primary ancestries in the Southwest and Central regions combined, 
clearly separating the five most eastern sites (AZ and MX) from the 
other sites (NM, TX, and MX) (Figure S2b). At K = 3, an additional 
divide emerged between Alamagordo NM and Roswell NM (Figure 
S2c). Despite some geographic structuring in the Caribbean (Figures 
S2d and S4), most analyses show high homogeneity among these 
sites, consistent with significant human-mediated gene flow among 
the islands as previously reported (Wallis et al., 1984). Although Ae. 
aegypti was likely established in the Caribbean and Florida at similar 
times in history (1600–1700s), the lower genetic diversity and higher 
amount of genetic structure in the Caribbean may reflect the accu-
mulation of genetic drift due to smaller population sizes and lower 
migration between the islands than between sites in Florida and/or 
population bottlenecks from eradication efforts on the islands (Dick 
et al., 2012; Sherpa et al., 2018).

4.2  |  Genetic predictions of SFE

The genetic data supported three of our predictions of SFE (#1, #2, 
and #4), with the Southeast as the putative source for westward 
spread across North America. The highest numbers of private al-
leles were found in Florida and the Caribbean, and genetic diversity 

largely decreased in populations westward (Tables 1 and 2, Figure 1). 
Distance to Florida was strongly correlated with heterozygosity; dis-
tance to the Caribbean was correlated to heterozygosity, but the 
signal was weaker. Florida likely harbors the oldest and most stable 
populations of Ae. aegypti in continental North America today be-
cause (1) southern Florida is hospitable year-round for Ae. aegypti 
(Johnson et al., 2017), (2) vector control never fully eliminated Ae. 
aegypti from the region (Slosek, 1986; Soper, 1965), and (3) Ae. al-
bopictus never fully displaced Ae. aegypti from the region (Lounibos 
et al., 2016).

In line with our second expectation of SFE, geographic dis-
tance was a strong predictor of genetic distance, especially after 
removing recent invasions on the west coast (including the highly 
differentiated southern California sites, and the northern California 
sites, which were likely founded by long-distance human-mediated 
movement) (Pless et al., 2017) (Figure 4). We also found that some 
of the genetic structures in North America could be explained by a 
continuous process like isolation by distance (Bradburd et al., 2018). 
Accounting for genetic variance due to isolation by distance resulted 
in less genetic clustering (Figure 5 and Figure S4).

Our third expectation, that daughter populations would contain 
a subset of the diversity contained by their parental group, could not 
be properly tested. The overall low genetic diversity of Ae. aegypti in 
the Americas, relative to that of its native Africa (Gloria-Soria et al., 
2016), resulted in a limited number of alleles per microsatellite and 
frequent presence of rare alleles that prevented the detection of di-
versity nestedness in the dataset. Exploring different regional cate-
gories and using higher sample sizes could help clarify these results. 
We do find support for the SFE model in the demographic analysis 
(prediction 4). Specifically, westward spread via a series of founder 
effects was better supported than independent invasions from the 
Southeast.

To the best of our knowledge, the SFE model has not been tested 
for any mosquito species, and has only been tested on a few insects 
more generally, see Pierce et al. (2014). We argue this model is use-
ful in thinking about the expansion of Ae. aegypti out of Africa and 
across continents such as North America. Like isolation by distance, 
SFE can serve as a null model for Ae. aegypti genetic structure in 
North America, and outliers from the model warrant additional re-
search and explanation (e.g., California being founded by multiple 
invasions, some from across the country). Our study also has some 
limitations that should be addressed in future work. While the linear 
decline of heterozygosity is indicative of SFE, it can also be explained 
by extensive admixture from an early branching lineage into later 
branching lineages (Pickrell & Reich, 2014). The increase in genetic 
distance with an increase in geographic distance can be caused by 
the budding pattern of migration under SFE or solely by isolation by 
distance (Wright, 1943). More extensive sequencing and modeling 
would be useful for testing these different demographic scenarios.

Clearly, Ae. aegypti can and does make stochastic long-distance 
jumps, for example, from the U.S. southeast to the Netherlands 
(Brown et al., 2011) and to California (Gloria-Soria et al., 2014). 
However, the demonstrated relevance of SFE and of environmental 

TA B L E  3 Test of allelic nestedness for Southeast, Central, and 
Southwest using microsatellite data

Microsatellite NODF Neutral ± SD

No. 
alleles 
total

No. alleles 
not fixed

AG2* 64.7 61.9 ± 1.5 20 9

AC5 49.5 49.4 ± 1.0 16 5

AC2 65.3 58.3 ± 7.8 6 4

AC1 70.8 64.5 ± 4.1 7 3

AG1 56.7 67.3 ± 3.8 7 3

B2 65.3 62.2 ± 6.8 6 3

AG5 45.2 45.2 ± 0.0 8 2

A1 41.7 51.7 ± 9.1 7 2

B3 46.2 45.2 ± 0.0 5 1

CT2 66.7 66.7 ± 0.0 3 1

Note: Asterisk (*) indicates nestedness metric (NODF) significantly 
greater than neutral score.
Abbreviations: Microsatellite, each microsatellite locus; NODF, 
nestedness metric based on the overlap and decreasing fill; 
Neutral ± SD, generated by randomly shuffling the rows of the 
nestedness matrix; No. alleles total, number of alleles for given 
microsatellite; No. alleles not fixed, number of alleles that vary across 
the three regions.
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variables (Pless et al., 2021) on Ae. aegypti gene flow suggests 
short-distance migration is important. Given the importance of 
short-distance migration, controlling Ae. aegypti in one area should 
help protect areas around it from becoming infested. These short-
distance migrations occur across the state and country lines (e.g., 
the Mexico samples cluster with U.S. samples at the same longitude, 
not with each other), highlighting the importance of international 
cooperation to prevent further invasions and control vector-borne 
diseases.
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