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1  |  INTRODUC TION

Range expansion is the process by which invasive species spread 
to new regions and environments. This process can be modeled as 
a continuous expanding wave, a series of founder events, or sto-
chastic jumps (Peischl et al., 2016). Each type of range expansion 
leads to characteristic genetic patterns that are also influenced by 

genetic drift and gene flow (Excoffier et al., 2009). Understanding 
the dynamics of range expansion for a given invasive species can 
shed light on their demographic history and may illuminate options 
for preventing future spread.

The Aedes aegypti mosquito (Linnaeus, 1762) is an invasive 
species that has successfully invaded tropical regions around the 
world and is increasingly reported in temperate regions (Kraemer 
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Abstract
The Aedes aegypti	mosquito	first	invaded	the	Americas	about	500	years	ago	and	today	
is a widely distributed invasive species and the primary vector for viruses causing den-
gue, chikungunya, Zika, and yellow fever. Here, we test the hypothesis that the North 
American	colonization	by	Ae. aegypti occurred via a series of founder events. We pre-
sent findings on genetic diversity, structure, and demographic history using data from 
70 Ae. aegypti	populations	in	North	America	that	were	genotyped	at	12	microsatellite	
loci and/or ~20,000 single nucleotide polymorphisms, the largest genetic study of the 
region	to	date.	We	find	evidence	consistent	with	colonization	driven	by	serial	founder	
effect (SFE), with Florida as the putative source for a series of westward invasions. 
This scenario was supported by (1) a decrease in the genetic diversity of Ae. aegypti 
populations moving west, (2) a correlation between pairwise genetic and geographic 
distances,	and	(3)	demographic	analysis	based	on	allele	frequencies.	A	few	Ae. aegypti 
populations on the west coast do not follow the general trend, likely due to a recent 
and distinct invasion history. We argue that SFE provides a helpful albeit simplified 
model for the movement of Ae. aegypti	across	North	America,	with	outlier	populations	
warranting further investigation.
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et al., 2015), with a rate of invasion that is expected to accelerate 
with climate change (Iwamura et al., 2020). The global distribution 
of this vector enabled the recent outbreaks of Zika and chikun-
gunya	in	the	Americas	(Carlson	et	al.,	2016; Leparc- Goffart et al., 
2014),	 reemergence	of	yellow	fever	 in	Africa	and	South	America	
(Hamlet et al., 2018), and a dramatic spread and increase of den-
gue cases around the world (Brady & Hay, 2020). Its widespread 
presence in Mexico and the Caribbean perpetuates endemic den-
gue, and its presence in the southern United States poses a public 
health threat.

Aedes aegypti	likely	arrived	in	the	Americas	in	the	17th	century	
aboard	slave	ships	from	Africa,	where	it	rapidly	spread	throughout	
the continent, as evidenced by outbreaks of yellow fever and den-
gue; see the comprehensive review (Powell et al., 2018). Disease 
outbreaks	 ranged	 from	 the	 Caribbean	 to	 the	 North	 Atlantic	 and	
the southeast United States by the early 1800s (Carrigan, 1959; 
Moreno- Madriñán & Turell, 2018). Dengue made its way into the 
central-	south	United	States	 in	 the	1850s	 (Chandler,	1956), and by 
the 1930s Ae. aegypti spanned much of Texas and coastal Mexico 
(Slosek, 1986). Ae. aegypti became more prevalent and widespread 
in New Mexico around 1994 (Merrill et al., 2005) and in California 
starting	around	2013	(Metzger	et	al.,	2017). Taken together, these 
lines of evidence paint a picture of the westward migration of the 
mosquito species.

When a small number of founders emigrate from a larger pop-
ulation, the new population will generally display a reduction in ge-
netic variation relative to the original population that can last for 
many generations— a phenomenon called “founder effect” (Nei et al., 
1975). The serial founder effect (SFE) (spread occurring through a 
series of these founder events) has been famously invoked to de-
scribe the movement of Homo sapiens	 out	 of	 Africa	 (Henn	 et	 al.,	
2012; Ramachandran et al., 2005). It has also been used to explain 
the global spread of the malaria parasite that accompanied humans 
out	of	Africa	and	 the	expansion	of	monarch	butterflies	across	 the	
Pacific (Pierce et al., 2014).	 Although	 numerous	 studies	 have	 ex-
amined Ae. aegypti invasions, migration, and structure using popu-
lations	 genetics	 from	 around	 the	 globe—	including	 North	 America	
(Gloria- Soria et al., 2016;	Kotsakiozi	et	al.,	2018; Pless et al., 2017)— 
none	have	explicitly	tested	the	hypothesis	of	colonization	by	SFE.

Here, we asked whether SFE explains the westward spread of 
Ae. aegypti	across	southern	North	America.	These	migrations	were	
likely accomplished by a combination of active dispersal and passive 
human-	mediated	transport	(e.g.,	trucks	and	ships)	(Fonzi	et	al.,	2015; 
Goncalves da Silva et al., 2012; Guagliardo et al., 2014; Medley et al., 
2015). Given an active average lifetime dispersal of <200 m for Ae. 
aegypti (Honorio et al., 2003; Jasper et al., 2019; Reiter, 2007; Russell 
et al., 2005), we predict that short- distance invasions are more com-
mon for both active and passive dispersal due to a higher number 
of introduction events and higher propagule pressure (Sakai et al., 
2001),	which	is	likely	to	result	in	colonization	via	SFE.

To test if Ae. aegypti	expansion	across	North	America	is	consis-
tent with a SFE moving westward, we evaluated our data against 
four expectations:

1. Source populations will have the highest number of alleles, 
with genetic diversity decreasing in proportion to the distance 
from the source (Hunley et al., 2012).

2. There will be a positive relationship between distance among 
groups and their genetic differentiation (Ramachandran et al., 
2005).

3. Following each founding event, the daughter group will carry a 
subset of variation from the parental group (Ramachandran et al., 
2005).

4. Demographic inference modeling will support SFE over other 
possible scenarios.

We inferred genetic structure across the region and tested these 
predictions using data from 12 microsatellite loci and single nucle-
otide	polymorphism	(SNP)	array	data	from	70	North	American	Ae. 
aegypti populations. Establishing the extent to which Ae. aegypti has 
spread via SFE is important for preventing and detecting future in-
vasions, as well as modifying vector control in response to the move-
ment of pesticide- resistant alleles.

2  |  MATERIAL S AND METHODS

2.1  |  Mosquito collection

Our analysis includes 70 Ae. aegypti populations across continental 
North	 America	 and	 the	 eastern	 Caribbean	 (Figure 1, Table 1 and 
Table S1). Microsatellite and SNP genotypes for most populations 
in this study have been reported in Evans et al. (2015), Gloria- Soria 
et al. (2014), Gloria- Soria et al. (2016),	Kotsakiozi	et	al.	(2017), Pless 
et al. (2017), Pless et al. (2020), Pless et al. (2021) and Saarman et al. 
(2017). New data presented here include microsatellite genotypes 
from	 (1)	 La	Altagracia,	Dominican	Republic,	 (2)	 San	 Jose	de	Ocoa,	
Dominican Republic, (3) St. Croix, USVI, and (4) St. Thomas, USVI, 
and	genome-	wide	SNP	data	for	(1)	St.	Thomas,	USVI,	(2)	Alamagordo,	
NM,	USA,	 (3)	Las	Cruces,	NM,	USA,	 (4)	Lubbock,	TX,	USA,	and	(5)	
Bexar,	TX,	USA.	The	new	populations	genotyped	fill	 important	re-
gional gaps, particularly in the Caribbean and the central United 
States. The remaining gaps in samplings, such as those between the 
panhandle of Florida and New Orleans, are due to the absence of Ae. 
aegypti in recent years.

The	mean	 sample	 size	 is	 33.8	 for	microsatellites	 and	 10.4	 for	
SNPs. The year range of sampling collections is 2006– 2018 (with 
>75%	of	the	samples	collected	in	2014	or	later).	All	mosquito	sam-
ples were collected as adults or eggs from traps and were shipped 
as adults to Yale University for analysis. No more than six individuals 
were	used	from	a	single	ovitrap	to	minimize	sampling	relatives.

2.2  |  DNA extraction and genotyping

The microsatellite dataset includes 2132 individuals from 63 pop-
ulations genotyped at 12 loci (Brown et al., 2011; Slotman et al., 
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2007). The SNP dataset includes 373 individuals from 36 popula-
tions genotyped at ~20,000	 SNPs	 with	 the	 Axiom_aegypti	 array	
(Evans et al., 2015). Microsatellites are appropriate for unbiased 
genetic diversity estimates and demographic inference analysis due 
to their multiallelic, highly polymorphic nature, and complete allele 
frequency	 spectra.	Additionally,	 their	 low	 cost	 facilitates	 the	 gen-
eration of large global and local reference databases. In contrast, 
the	 larger	 number	 of	markers	 from	 the	 Axiom_aegypti	 array	may	
provide higher fine- scale resolution for population structure, par-
ticularly when populations are of recent origin or when gene flow 

is significant (Gloria- Soria et al., 2018). However, the ascertainment 
bias in the design of the SNP array is likely to affect measurements 
of genetic diversity and may also impact demographic analysis, 
which uses allele diversity spectrum to evaluate the likelihood of dif-
ferent scenarios. Therefore, the two sets of genetic markers provide 
complementary advantages and are useful for different analyses.

Whole	genomic	DNA	was	extracted	from	individual	mosquitoes	
using the Qiagen DNeasy Blood and Tissue kit according to manufac-
turer	instructions,	including	the	optional	RNAse	A	step.	Individuals	
were genotyped for 12 microsatellites as in Gloria- Soria et al. (2016). 

F I G U R E  1 (a)	Map	showing	locations	for	each	Aedes aegypti sampling site included in this study, colored by regional group. The inset 
on the bottom left shows southern California. Mean allelic richness estimated from microsatellites by rarefaction of all sites within each 
region is shown in the boxes. (b) STRUCTURE plot of the complete microsatellite dataset with K = 4 number of clusters. Each column is an 
individual, and the heights of the color bars represent the proportion of ancestry that came from each of the four inferred clusters (yellow, 
light blue, red, and dark blue). The outlier (red) in southern California is Exeter County. The longitude of each site is plotted against its mean 
observed	heterozygosity	(c),	expected	heterozygosity	(d),	and	allelic	richness	estimated	by	rarefaction	using	microsatellite	data	(e).	Colors	in	
the map (a), above the STRUCTURE plot (b), and in the diversity plots (c– e) are consistent and correspond to regional groups

(a)

(b)

(c) (d) (e)
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TA B L E  1 Aedes aegypti populations included in this study

Pop. number Population Abbrev. Region name Year N1 N2

1 St. Vincent SV Caribbean 2015 0 12

2 Trinidad TRI Caribbean 2014 0 12

3* St. Croix, USVI StX Caribbean 2017 32 0

4*+ St. Thomas, USVI StT Caribbean 2017 36 10

5 Patillas, Puerto Rico PR Caribbean 2014 40 12

6* La	Altagracia,	DR Alt Caribbean 2018 31 0

7* San Jose de Ocoa, DR Oco Caribbean 2018 39 0

8 Washington, D.C. WashDC Southeast 2014 0 11

9 Palm	Beach	County,	FL,	USA PBC Southeast 2013 40 12

10 Miami,	FL,	USA Miami Southeast 2011 40 8

11 Rio,	FL,	USA FLO Southeast 2014 40 0

12 Melbourne,	FL,	USA Mel Southeast 2014 40 12

13 Conch	Key,	FL,	USA Conch Southeast 2006 40 0

14 Vaca	Key,	FL,	USA Vaca Southeast 2009 40 0

15 Daytona	Beach,	FL,	USA DB Southeast 2017 40 12

16 St.	Augustine,	FL,	USA StA Southeast 2017 40 0

17 Orlando,	FL,	USA Orl Southeast 2014 32 11

18 Barberville,	FL,	USA Bb Southeast 2017 40 11

19 North Key West, FL NK Southeast 2013 0 11

20 Key	West,	FL,	USA KW16 Southeast 2016 40 12

21 Fort	Myers,	FL,	USA FM Southeast 2014 37 12

22 Tampa,	FL,	USA Tam Southeast 2014 40 12

23 Sarasota,	FL,	USA Sar Southeast 2014 39 12

24 Muscogee,	GA,	USA 18 and 9 Southeast 2011 40 0

25 New	Orleans	LA,	USA NO and NO2 Southeast 2012 40 10

26 Tapachula	Norte,	CHP,	MEX TapaN Central 2012 0 12

27 Houston,	TX,	USA Houston and H11 Central 2011 19 8

28 Dallas,	TX,	USA Dall Central 2017 40 0

29 Ellis,	TX,	USA El Central 2017 40 0

30 Nueces,	TX,	USA Nuec Central 2017 40 0

31 Cameron,	TX,	USA Cam Central 2015 40 0

32 Travis,	TX,	USA Tr Central 2017 40 0

33 Hidalgo,	TX,	USA Hid Central 2017 40 0

34+ Bexar,	TX,	USA Bex Central 2017 18 8

35 Amacuzac,	Morelos,	Mexico Amac16_P Central 2014 0 12

36 Nuevo	Leon,	MEX NL Central 2017 10 0

37+ Lubbock,	TX,	USA Lub Central 2017 14 8

38 Carlsbad,	NM,	USA Car Central 2017 17 0

39 Roswell,	NM,	USA Ros Central 2017 39 0

40+ Alamagordo,	NM,	USA Ala Central 2017 35 4

41 Albuquerque,	NM,	USA Alb Central 2018 22 0

42 Juarez,	MEX Juar Central 2017 40 0

43 Sunland	Park,	NM,	USA SP Central 2017 37 0

44+ Las	Cruces,	NM,	USA LC18 Central 2018 40 6

45 Truth of Consequences, NM, 
USA

TC Central 2017 17 0
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Four	 loci	 (A1,	B2,	B3,	and	A9)	are	 trinucleotide	 repeats,	and	eight	
(AC2,	CT2,	AG2,	AC4,	AC1,	AC5,	AG1,	and	AG4)	are	di-	nucleotide	
repeats.	Any	individuals	that	were	genotyped	at	fewer	than	10	loci	
were excluded from the analysis. We include only populations with 
a minimum of 10 individuals and arbitrarily selected 40 individuals 
from sites with more than 40 samples to control for unequal or low 
sample	size	(Puechmaille,	2016).

Individuals	 were	 genotyped	 using	 Axiom_aegypti,	 a	 high-	
throughput	 genotyping	 chip	 that	 has	 50,000	 probes	 (Evans	 et	 al.,	
2015). Genotyping was conducted by the Functional Genomics Core 
at the University of North Carolina, Chapel Hill. To prune the SNP 
dataset, we first excluded 2166 SNPs that failed a test of Mendelian 
inheritance (Evans et al., 2015). Since some analyses can be con-
founded	by	SNPs	in	linkage	disequilibrium	(Alexander	et	al.,	2009), 
we excluded tightly linked SNPs with the plink command “- - indep 
75	kb	50	2”	(Purcell,	2016; Purcell et al., 2007). We also excluded any 
SNPs that were genotyped in <90%	of	the	individuals	and	those	with	
a minor allele frequency of <5%,	resulting	in	20,003	SNPs	remaining	
for analysis.

All	microsatellite	 data	 are	 available	 in	Dataset	 S1,	 and	 all	 SNP	
data	 are	 available	 in	Dataset	 S2.	Additionally,	 the	data	 can	be	 ac-
cessed on Dryad (https://doi.org/10.5061/dryad.5x69p	8d5j) and 
VectorBase (VBP0000801).

2.3  |  Inferring geographic regions based on 
genetic structure

All	microsatellite	 loci	were	 tested	 for	within-	population	deviations	
from Hardy– Weinberg equilibrium and for linkage disequilibrium 
among	loci	pairs	using	the	R	package	Genepop	v.	1.1.4.	with	5000	de-
memorizations,	500	batches,	and	5000	iterations	per	batch	for	both	
tests (Raymond & Rousset, 1995). To correct for multiple testing, a 
Bonferroni	correction	was	applied	at	the	.05	α level of significance.

To establish regional groupings for subsequent analysis, we 
examined population structure using a number of methods. We 
performed	 principal	 component	 analysis	 (PCA)	 using	 the	 R	 pack-
age	 Adegenet	 v.	 2.1.1.	 (Jombart,	 2008) for the microsatellites. 

Pop. number Population Abbrev. Region name Year N1 N2

46 Deming,	NM,	USA Dem Central 2017 40 0

47 Tucson,	AZ,	USA TJC2 Southwest 2012 40 12

48 Nogales,	Son,	MEX Nog Southwest 2013 40 9

49 Hermosillo,	Son,	MEX Her Southwest 2013 40 0

50 Maricopa	County,	AZ,	USA Az Southwest 2013 39 0

51 Las	Vegas,	NV,	USA LV Southern	CA 2017 31 0

52 El	Centro,	CA,	USA ElC Southern	CA 2016 40 0

53 Coachella,	CA,	USA Coa Southern	CA 2017 27 0

54 Tijuana,	BCN,	MEX Tj Southern	CA 2013 20 10

55 San	Diego,	CA,	USA Cw and SY Southern	CA 2015 40 12

56 San	Bernardino,	CA,	USA SBern Southern	CA 2017 40 0

57 Mission	Viejo,	CA,	USA MV Southern	CA 2015 40 12

58 Montclaire,	CA,	USA Mc Southern	CA 2016 30 0

59 Orange,	CA,	USA Or Southern	CA 2015 13 0

60 Santa	Ana,	CA,	USA SA17 Southern	CA 2017 33 0

61 Anaheim,	CA,	USA Ana_LC	and	Ana Southern	CA 2015 31 0

62 Garden	Grove,	CA,	USA GG Southern	CA 2015 29 12

63 La	Habra,	CA,	USA LH Southern	CA 2017 13 0

64 Rosemead,	CA,	USA Ro Southern	CA 2017 40 0

65 Los	Angeles,	CA GLA Southern	CA 2014 0 6

66 Exeter,	CA,	USA Exe Southern	CA 2014 23 12

67 Clovis,	CA,	USA Clovis and Cal Northern	CA 2013 40 6

68 Fresno,	CA,	USA Fres Northern	CA 2015 27 12

69 Madera,	CA,	USA MAD Northern	CA 2015 40 12

70 San	Mateo,	CA,	USA SM and SM2 Northern	CA 2013 22 8

Note: Population number corresponding to Figure 1,	population	name,	population	abbreviation,	region	name,	year	sampled,	the	sample	size	for	
microsatellite data (N1),	and	sample	size	for	SNP	data	(N2). New microsatellite data are indicated with an asterisk (*) and new SNP data are indicated 
with a cross (+).
Abbreviations:	DR,	Dominican	Republic;	MEX,	Mexico;	USA,	United	States	of	America;	USVI,	United	States	Virgin	Islands.

TA B L E  1 (Continued)

https://doi.org/10.5061/dryad.5x69p8d5j


6 of 14  |     PLESS Et aL.

We conducted 20 independent runs of STRUCTURE v. 2.3.4 for 
K = 1– 10 (Pritchard et al., 2000) using the microsatellite data and 
600,000 generations, with the first 100,000 discarded as burn- in. 
We	visualized	the	STRUCTURE	results	using	the	programs	Clumpak	
and DISTRUCT v.1.1 (Kopelman et al., 2015; Rosenberg, 2004), 
and we inferred the optimal value of K using relevant guidelines 
(Cullingham et al., 2020; Earl, 2012; Evanno et al., 2005). We re-
peated these analyses for the Caribbean microsatellite dataset (40 
independent runs of STRUCTURE for K = 1– 6), and for the Central 
and Southwest microsatellite datasets combined (20 independent 
runs of STRUCTURE for K = 1– 10) to further explore the regional 
genetic structure of the two regions that include new populations. 
Additionally,	we	evaluated	genetic	 structure	within	 the	Caribbean	
using	 a	 multivariate	 approach,	 Discriminant	 Analysis	 of	 Principal	
Components	(DAPC),	on	the	microsatellite	data	using	the	Adegenet	
package (Jombart, 2008).

A	PCA	for	the	complete	SNP	dataset	was	generated	with	Plink	
v.1.9 (Purcell, 2016; Purcell et al., 2007).	Additionally,	we	ran	5	inde-
pendent runs in fastSTRUCTURE 1.0 (Raj et al., 2014) using the SNP 
dataset for K =	1–	10,	and	visualized	the	results	using	Clumpak	and	
DISTRUCT v.1.1 (Kopelman et al., 2015; Rosenberg, 2004).

Based on the results from our genetic clustering analysis, we 
grouped the samples into six regions for further analyses (Table 1, 
Figure 1): Caribbean contains the Caribbean; Southeast contains 
Florida, Louisiana, Georgia, and Washington D.C.; Central contains 
eastern Texas, western Texas, New Mexico; Southwest contains 
Arizona;	Southern	CA	contains	southern	California	and	Nevada;	and	
Northern	CA	contains	northern/central	California.

2.4  |  Prediction 1: Genetic diversity decreases 
toward the west

Observed	 heterozygosity	 (HO),	 expected	 heterozygosity	 (HE), the 
inbreeding coefficient (FIS), and a number of private alleles (alleles 
found in no other population) were calculated from the microsat-
ellite	dataset	for	each	population	using	GenAlEx	v.	6.51	(Peakall	&	
Smouse, 2006), and allelic richness was estimated by rarefaction 
(N = 30) using the software HP- Rare v. 1.0 (Kalinowski, 2005). These 
measurements were not calculated for the SNP dataset due to as-
certainment bias in the design of the SNP array (Evans et al., 2015).

To assess if genetic diversity decreased westward, as expected 
from SFE, we calculated linear regressions for longitude versus 
the	 different	 genetic	 diversity	 metrics	 (observed	 heterozygosity,	
expected	heterozygosity,	and	allelic	 richness)	 in	R	v.	4.0.2	 (R	Core	
Team, 2020). To determine whether Florida or the Caribbean was 
the more likely source of the expansion, we also calculated linear 
regressions	 for	observed	heterozygosity,	expected	heterozygosity,	
and allelic richness of each population versus (1) their distance to 
Florida and (2) their distance to the Caribbean.

We assessed regional genetic diversity by averaging the ge-
netic diversity metrics across all the sites within each region. Since 
regional allelic richness and the number of private alleles could be 

biased by the number of individuals in a region, we calculated the ge-
netic diversity measures a second time after combing all individuals 
within each region and then randomly resampling them so that each 
region had the same number of individuals.

2.5  |  Prediction 2: Positive relationship between 
geographic and genetic distance

Using both the microsatellite and SNP datasets, we calculated pair-
wise FST and evaluated significance with 1000 permutations using 
Arlequin	3.5	(Excoffier	et	al.,	2005). We then tested for a relation-

ship between pairwise genetic distance 
(

FST

(1− FST)

)

 and geographic 

distance using a Mantel test with 9999 permutations, and repeated 
the test after excluding known new invasions, defined as popula-
tions that were first detected in 2013 or later (California, Las Vegas 
NV,	and	Albuquerque	NM).

Because clustering and assignment methods may mistake con-
tinuous processes (e.g., isolation by distance, in which there is a 
positive relationship between geographic distance and gene flow 
between populations) for discrete processes, we implemented a 
method called conStruct v. 1.0.4 (Bradburd et al., 2018) using the 
SNP array data. This model- based clustering method uses isolation 
by distance when possible to explain genetic variation. We ran three 
independent runs of the program for K = 1– 4 with 1000 iterations 
and the spatial model setting and another three independent runs 
with the non- spatial model setting. We assessed posterior probabil-
ity, Markov chain Monte Carlo (MCMC) performance, and layer con-
tributions to compare the independent runs and identify a putative 
optimal number of layers for each run. The program performs best 
when there are more loci than the number of samples, so it was not 
suitable to run with the microsatellite data.

2.6  |  Prediction 3: Daughter groups nested within 
parental group

To test the hypothesis that daughter groups contain a subset of 
the allelic diversity from parent groups, we created the presence/
absence matrices representing all alleles for each of the 12 micros-
atellites, where regional sites were columns, and the different alleles 
were rows. Microsatellites were used rather than SNPs because the 
latter are biallelic, and thus do not have the broad allele frequency 
spectra	 required	for	 this	 type	of	analysis.	To	maximize	the	chance	
of finding a pattern if one existed, we focused on three regions that 
were most likely to display this pattern: Southeast, Central, and 
Southwest.	To	control	for	uneven	sample	size	across	different	popu-
lations, we combined individuals within each region and resampled, 
so each region was represented by the same number of individuals 
before analysis. We calculated the nestedness metric based on the 
overlap and decreasing fill (NODF) for each matrix, in which higher 
scores indicate greater amounts of nestedness (Morrison, 2013), 



    |  7 of 14PLESS Et aL.

using the R package “RInSp” (Zaccarelli et al., 2013). To compare our 
matrices and their NODF scores with the null expectation, we cre-
ated five control model matrices by shuffling the elements in each 
row	 using	 the	 R	 package	 “picante,”	 specifically	 the	 randomizeMa-
trix tool, with 1000 iterations and the null model set as “richness” 
(Kembel et al., 2010).

2.7  |  Prediction 4: Demographic inference 
modeling supports SFE

We	 performed	 demographic	 history	 analysis	 using	 DIYABC-	RF	
(Random Forest) v.1.1.1- beta (Collin et al., 2021) on the microsatel-
lite dataset, to avoid possible effects of ascertainment bias on al-
lele frequency spectra derived from the SNP chip selection process. 
The	 DIYABC-	RF	 approach	 enables	 efficient	 discrimination	 among	
scenarios and estimation of the posterior probabilities with a lower 
computational burden than classic approximate Bayesian computa-
tion approaches (Collin et al., 2021). The program applies supervised 
machine learning methods to population genetic data for statistical 
inference through the use of a training set. The training set includes 
a given number of datasets simulated under different evolutionary 
scenarios using parameter values drawn from prior distributions. 
Priors were set to be as wide as possible within reason given known 
colonization	events	 (Table	S2).	Each	resulting	dataset	 is	 then	sum-
marized	with	a	set	of	descriptive	statistics.	These	summary	statis-
tics describe genetic variation within populations, between pairs or 
triplets of populations, averaged over loci. The RF algorithm then 
chooses the best scenario from the simulated datasets and charac-
terizes	the	posterior	distribution	of	parameters	of	 interest	under	a	
specific scenario and assesses the performance of RF- based infer-
ences in terms of prediction through the computation of error and 
accuracy measurements.

Specifically,	we	compared	SFE	scenario—	in	which	Southern	CA	
split from Southwest, which split from Central, which split from the 
Southeast— against a scenario where each region diverged from the 
Southeast independently (Figure 2). Each region was represented 

by	 158	 randomly	 selected	 samples,	 and	we	 performed	 the	 analy-
sis in duplicate, using a second random draw from each region. We 
excluded Exeter from Southern California since it is a known out-
lier that likely has a different origin than the other sites in Southern 
California (see Results). To ensure that pooling across populations 
did not bias the outcome, we also repeated the analysis twice re-
placing the regions with single, arbitrarily selected populations from 
each	 region	 (Table	S2).	We	 ran	DIYABC-	RF	using	 a	 training	 set	of	
200,000 simulated datasets. The constructed RF for both model 
choice and parameter estimation used 1000 trees, and the best sce-
nario was selected based on linear discriminant analysis and partial 
least squares regression analysis, in each case. Full parameters and 
priors are listed in Table S2.

3  |  RESULTS

3.1  |  Inferring geographic regions based on genetic 
structure

We first confirmed that our microsatellites behave as independent, 
neutral	loci	by	performing	756	Hardy–	Weinberg	equilibrium	(HWE)	
tests	 (12	 microsatellite	 loci	 X	 63	 populations)	 and	 4158	 linkage	
disequilibrium	pairwise	 tests	 on	 loci	within	 populations.	 After	 ap-
plying a Bonferroni correction (p =	.05/number	of	tests),	13	loci-	by-	
populations	 (1.7%)	were	out	of	HWE,	 and	 there	were	not	 enough	
data	to	determine	the	p-	values	for	18	tests.	Similarly,	57	loci	pairs	
within	 populations	 (1.4%)	 showed	 significant	 evidence	 of	 being	 in	
linkage disequilibrium after a Bonferroni correction, and there were 
not enough data to determine the p- values for 127 tests. These ob-
servations,	1.7%	and	1.4%,	are	below	the	“significance”	cutoff	of	5%.

To test our hypothesis that Ae. aegypti	 primarily	 colonized	
North	America	through	a	series	of	westward	founder	effects,	 it	 is	
useful to represent our 70 populations as major regions defined 
by their geography and population structure. We explored genetic 
population structure using both microsatellites and SNP markers 
and various methods. Using Bayesian clustering with the CV error 

F I G U R E  2 Scenarios	tested	by	DIYABC-	RF	using	microsatellite	data.	The	two	trees	depict	scenarios	of	Ae. aegypti	colonization	of	
continental	North	America.	Scenario	1	shows	independent	invasions	from	the	Southeast	with	bottlenecks	after	each	lineage	division	and	
Scenario 2 shows a pattern of serial founder effect moving west from the Southeast, also with bottlenecks. Posterior probabilities (PP) are 
shown for each scenario. Time 0 corresponds to the present (when the samples were collected). Colors for each lineage correspond to Figure 
1,	and	changes	in	effective	population	size	(bottlenecks)	are	shown	in	gray.	Posterior	probabilities	and	divergence	times	correspond	to	a	
single run of the model using random draws from each region (Table S2b); results are similar for the other three independent runs (Table S2)
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method (Evanno et al., 2005) for the microsatellite data, we found 
two primary clusters which generally split the west half of North 
America	from	the	east	half,	with	a	large	transition	zone	through	New	
Mexico	and	Texas	(Figure	S1a).	At	K	= 4, the four ancestries corre-
spond generally to 1: Northern California + Central, 2: Southwest, 3: 
Southeast, and 4: Caribbean (Figure 1b).	Southern	CA	has	sites	that	
are outliers (e.g., Exeter) or appear to show admixture (e.g., Mission 
Viejo), consistent with the complex, recent invasions known to char-
acterize	the	region	(Pless	et	al.,	2020). Bayesian clustering using the 
SNP data reinforced the results from the microsatellites and added 
additional resolution in southern California, for example showing 
that Garden Grove and Mission Viejo each have distinct genetic sig-
natures (Figure 3).

PCA	using	 SNPs	 showed	 a	 similar	 pattern.	 The	 Southeast	 and	
Caribbean are grouped together on the right of the graph, along 
with Exeter, a known outlier that may represent a third invasion into 
California (Figure S2). Southern California and Southwest clustered 
in	 the	 top	 left,	Northern	CA	was	 in	 the	bottom	 right,	 and	Central	
was	 in	 the	middle.	PCA	using	 the	microsatellites	 showed	a	 similar	
pattern but with a higher level of overlap among all the populations 
(not shown). The consistency in the clustering results suggests the 
identified regions could represent major “steps” during SFE coloni-
zation	and	that	subsequent	analyses	could	be	performed	using	these	
groupings.

We further explored the genetic structure within the 
Caribbean and the Southwest, since we have new populations in 
these regions compared to previous publications. The CV error 
method (Evanno et al., 2005) suggested K =	5	for	the	Caribbean	
microsatellite data (Figure S1e), but K = 3 made the most biologi-
cal sense, showing moderate differentiation among the Dominican 
Republic (DR), United States Virgin Islands (USVI), and Puerto Rico 
(PR)	 (Figure	S1d).	DAPC	 showed	a	 connection	between	 some	of	
the samples from Ocoa, DR, and PR (Figure S3). In the Southwest 
and Central, Bayesian clustering at K = 2 found a strong divide 
between	Arizona	and	New	Mexico	(Figure	S1b);	at	K	= 3 western 
NM	 (through	Alamagordo)	 separated	 from	more	 eastern	 sites	 in	
New Mexico and Texas (Figure S1c).

3.2  |  Prediction 1: Genetic diversity decreases 
toward the west

The microsatellite data showed that, overall, the highest genetic 
diversity was found in the Southeast, followed by the Caribbean, 
Central,	 Southwest,	Northern	CA,	 and	Southern	CA	 (R2 for longi-
tude vs. allelic richness = 0.32, p < 10−8) (Figure 1, Table 2).	After	
combining	and	standardizing	the	number	of	 individuals	per	region,	
we found that Southeast and Southern California had the highest 
number of private alleles (alleles found in no other region), followed 
by the Caribbean and Central (Table 2). This is consistent with the 
Southeast having the oldest population and Southern California 
being founded multiple times from different regions. There was a 
stronger	correlation	between	heterozygosity	versus	distance	 from	

Florida (R2 =	 .53,	p < 10−11)	than	between	heterozygosity	and	dis-
tance from the Caribbean (R2 = .32, p < 10−11).

3.3  |  Prediction 2: Positive relationship between 
geographic and genetic distance

Considering the microsatellite data, the FST (a measure of genetic dif-
ferentiation due to genetic structure) values between all population 
pairs (N =	1953)	were	0.13	± 0.070 (mean ± SD), and all values were 
significantly	different	than	zero	at	the	0.05	level	after	correction	for	
multiple tests (Table S4). Geographic distance was a significant pre-
dictor of genetic distance (calculated as FST

(1− FST)
) (Mantel R = .14, 

p = .024) (Figure 4a).	After	removing	known	new	invasions	from	the	
dataset (detected in 2013 or later), the strength of the relationship 
increased (Mantel R =	 .52,	p < 10−4) (Figure 4b). Similarly, the pair-
wise FST values generated from the SNP data (N = 630) were 
0.10 ±	0.045	(mean	± SD), and all values were significantly different 
than	 zero	 except	 for	 the	 pairs	 between	 Madera	 and	 San	 Mateo	
(Table	S5).	Using	the	SNP	data,	there	was	also	a	significant	correla-
tion between geographic and genetic distance (Mantel R = 0.23, 
p = .0038) (Figure 4c), and the strength of the correlation increased 
when new invasions were removed (Mantel R = .62, p < 10−4) 
(Figure 4d).

To investigate the effect of continuous processes, namely isola-
tion by distance, on clustering, we ran conStruct for K = 1– 4 using 
the SNP dataset. We focus on K = 2 because this model consistently 
produced well- behaved MCMC posterior probability plots, and the 
first two layers contributed most of the variance in the majority 
of the runs (Table S6). The three independent non- spatial models 
produced very consistent results at K = 2, showing a clear struc-
ture, especially between Florida + Exeter and California (Figure 5 
and	Figure	S4a).	After	controlling	for	the	effect	of	isolation	by	dis-
tance, the three spatial runs showed significantly less genetic struc-
ture (Figure 5 and Figure S4b), although one run continued to show 
Exeter as a clear outlier (Figure S4c). In all cases, the posterior prob-
ability across MCMC runs was higher for the spatial models than the 
non- spatial models. The non- spatial model showed additional struc-
ture at K = 3 and K = 4 (e.g., differences between the Caribbean 
and	continental	North	America),	but	again	the	spatial	model	at	these	
higher K levels showed less structure.

3.4  |  Prediction 3: Daughter groups nested within 
parental group

To evaluate if each putative daughter group contained a subset of 
the diversity in the presumed parent group, we calculated NODF for 
each microsatellite allele for the three regions where we expected 
the larger effect: Southeast, Central, and the Southwest. However, 
nine loci had <4 alleles, an insufficient number to detect nestedness 
patterns (Table 3).	Of	 the	 three	 remaining	 loci,	one	 (AG2)	 showed	
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evidence of nestedness (NODF score >1SD above the neutral NODF 
scores), and the other two were within 1SD of the neutral model 
(Table 3).	Additional	analyses	using	more	regions	or	individual	popu-
lations rather than regions did not show significant nestedness.

3.5  |  Prediction 4: Demographic inference 
modeling supports SFE

Using approximate Bayesian computation combined with super-
vised machine learning, we compared two invasion scenarios to test 
whether the data were more consistent with SFE or independent 
invasions from the Southeast (Figure 2). SFE had a higher posterior 
probability (PP > 0.922 across all four independent runs) than in-
dependent invasions from the Southeast (PP < 0.07 across all four 
independent runs). Under the SFE model and assuming ten genera-
tions/year,	 we	 estimated	 that	 Southern	 CA	 split	 from	 Southwest	

~39– 66 years ago, Southwest split from Central ~166– 207 years 
ago, and Central split from Southeast ~322–	345	years	ago	(Table	S2).	
We ran the model twice using randomly selected samples from each 
region and twice using single populations from each region; results 
were similar across the four runs (Table S2).

4  |  DISCUSSION

4.1  |  Regional genetic structure

In this study, we tested whether SFE described the westward spread 
of Ae. aegypti	across	North	America	by	evaluating	the	genetic	diver-
sity and population structure from a rich dataset of 70 populations. 
We first established relevant regions for analysis based on genetic 
structure;	 these	are	the	hypothesized	“stepping-	stone”	 regions	for	
the westward spread of Ae. aegypti. We identified six genetic regions 

F I G U R E  3 Population	structure	in	North	America	generated	by	fastStructure	using	the	SNP	dataset.	Populations	are	arranged	according	
to their longitude (west on the left). Each column is an individual, each color represents an inferred group, and the height of the color bar 
shows the proportion of ancestry that came from the K inferred groups (K = 2 on the top panel and K = 8 on the bottom panel)

TA B L E  2 Genetic	diversity	of	each	region	calculated	with	microsatellites

Region Ho ± SDa Hob He ± SDa Heb AR ± SDa ARb
Private 
allelesb

Caribbean 0.55	± 0.032 0.56 0.56	± 0.030 0.60 4.21 ± 0.32 6.65 4

Southeast 0.62 ±	0.035 0.62 0.62 ± 0.016 0.65 4.42 ± 0.22 6.89 8

Central 0.54	±	0.051 0.55 0.56	±	0.051 0.61 3.97 ± 0.44 6.31 3

Southwest 0.55	± 0.029 0.57 0.57	± 0.023 0.60 3.83 ± 0.018 5.23 1

Southern	CA 0.47 ± 0.086 0.48 0.47 ± 0.072 0.58 2.99 ±	0.53 6.07 6

Northern	CA 0.49 ±	0.015 0.49 0.52	± 0.023 0.57 3.69 ± 0.37 4.82 0

Abbreviations:	Ho,	observed	heterozygosity;	He,	expected	heterozygosity;	AR,	allelic	richness	estimated	by	rarefaction	(n = 30); Private alleles, 
number of unique alleles found only in that region.
aMean of populations within each region.
bIndividuals	in	each	region	combined	and	resampled	to	standardized	size	before	analyses.
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based on both microsatellites and SNPs that are consistent with pre-
vious work (Gloria- Soria et al., 2016;	Kotsakiozi	et	al.,	2018). Broadly, 
we detected two primary clusters in the microsatellite dataset which 
split the eastern populations from the western ones with a large ad-
mixture	zone	through	the	Southwest	and	Central	regions	(Figure 2a). 
At	higher	 levels	of	K,	additional	 structure	emerged	 (Figure 2), and 
we found genetic differentiation by geography with some outliers, 

specifically	Exeter	CA,	which	clusters	with	Florida	and	likely	repre-
sents the third invasion into the state (Figure S1). Southern California 
has unusual genetic patterns (e.g., high genetic differentiation and a 
high number of private alleles despite low diversity), as discussed 
elsewhere (Pless et al., 2020). The stability of the regions we identi-
fied	is	indicated	by	older	allozyme	data	from	parts	of	the	same	dis-
tribution using collections from the 1970s and 1980s (Wallis et al., 

F I G U R E  4 Pairwise	genetic	distance	(linearized	FST) for pairs of populations as a function of the geographic distance (km) between 
them for (a) all microsatellite data, (b) all SNP data, (c) all microsatellite data excluding known new invasions (California, Las Vegas NV, and 
Albuquerque	NM),	and	(d)	all	SNP	data	excluding	known	new	invasions

(a) (b)

(c) (d)

F I G U R E  5 North	America	population	structure	(K	= 2) generated in conStruct with the SNP dataset using (a) a non- spatial model and (b) a 
spatial model that first attributes genetic variation to isolation by distance where possible

(a) (b)
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1983). In particular, the break between the Southeast and Central 
around the border of Texas and Louisiana was clearly identified in 
these early studies.

We further explored the intra- region structure for the Central 
and Caribbean, since these are the regions where we added new 
genetic data. Bayesian clustering using microsatellites found two 
primary ancestries in the Southwest and Central regions combined, 
clearly	separating	the	five	most	eastern	sites	(AZ	and	MX)	from	the	
other	sites	 (NM,	TX,	and	MX)	 (Figure	S2b).	At	K	= 3, an additional 
divide	emerged	between	Alamagordo	NM	and	Roswell	NM	(Figure	
S2c). Despite some geographic structuring in the Caribbean (Figures 
S2d and S4), most analyses show high homogeneity among these 
sites, consistent with significant human- mediated gene flow among 
the islands as previously reported (Wallis et al., 1984).	Although	Ae. 
aegypti was likely established in the Caribbean and Florida at similar 
times in history (1600– 1700s), the lower genetic diversity and higher 
amount of genetic structure in the Caribbean may reflect the accu-
mulation	of	genetic	drift	due	to	smaller	population	sizes	and	lower	
migration between the islands than between sites in Florida and/or 
population bottlenecks from eradication efforts on the islands (Dick 
et al., 2012; Sherpa et al., 2018).

4.2  |  Genetic predictions of SFE

The genetic data supported three of our predictions of SFE (#1, #2, 
and #4), with the Southeast as the putative source for westward 
spread	 across	North	America.	 The	 highest	 numbers	 of	 private	 al-
leles were found in Florida and the Caribbean, and genetic diversity 

largely decreased in populations westward (Tables 1 and 2, Figure 1). 
Distance	to	Florida	was	strongly	correlated	with	heterozygosity;	dis-
tance	 to	 the	 Caribbean	was	 correlated	 to	 heterozygosity,	 but	 the	
signal was weaker. Florida likely harbors the oldest and most stable 
populations of Ae. aegypti	 in	continental	North	America	 today	be-
cause (1) southern Florida is hospitable year- round for Ae. aegypti 
(Johnson et al., 2017), (2) vector control never fully eliminated Ae. 
aegypti from the region (Slosek, 1986; Soper, 1965), and (3) Ae. al-
bopictus never fully displaced Ae. aegypti from the region (Lounibos 
et al., 2016).

In line with our second expectation of SFE, geographic dis-
tance was a strong predictor of genetic distance, especially after 
removing recent invasions on the west coast (including the highly 
differentiated southern California sites, and the northern California 
sites, which were likely founded by long- distance human- mediated 
movement) (Pless et al., 2017) (Figure 4). We also found that some 
of	the	genetic	structures	in	North	America	could	be	explained	by	a	
continuous process like isolation by distance (Bradburd et al., 2018). 
Accounting	for	genetic	variance	due	to	isolation	by	distance	resulted	
in less genetic clustering (Figure 5 and Figure S4).

Our third expectation, that daughter populations would contain 
a subset of the diversity contained by their parental group, could not 
be properly tested. The overall low genetic diversity of Ae. aegypti in 
the	Americas,	relative	to	that	of	its	native	Africa	(Gloria-	Soria	et	al.,	
2016), resulted in a limited number of alleles per microsatellite and 
frequent presence of rare alleles that prevented the detection of di-
versity nestedness in the dataset. Exploring different regional cate-
gories	and	using	higher	sample	sizes	could	help	clarify	these	results.	
We do find support for the SFE model in the demographic analysis 
(prediction 4). Specifically, westward spread via a series of founder 
effects was better supported than independent invasions from the 
Southeast.

To the best of our knowledge, the SFE model has not been tested 
for any mosquito species, and has only been tested on a few insects 
more generally, see Pierce et al. (2014). We argue this model is use-
ful in thinking about the expansion of Ae. aegypti	out	of	Africa	and	
across	continents	such	as	North	America.	Like	isolation	by	distance,	
SFE can serve as a null model for Ae. aegypti genetic structure in 
North	America,	and	outliers	from	the	model	warrant	additional	re-
search and explanation (e.g., California being founded by multiple 
invasions, some from across the country). Our study also has some 
limitations that should be addressed in future work. While the linear 
decline	of	heterozygosity	is	indicative	of	SFE,	it	can	also	be	explained	
by extensive admixture from an early branching lineage into later 
branching lineages (Pickrell & Reich, 2014). The increase in genetic 
distance with an increase in geographic distance can be caused by 
the budding pattern of migration under SFE or solely by isolation by 
distance (Wright, 1943). More extensive sequencing and modeling 
would be useful for testing these different demographic scenarios.

Clearly, Ae. aegypti can and does make stochastic long- distance 
jumps, for example, from the U.S. southeast to the Netherlands 
(Brown et al., 2011) and to California (Gloria- Soria et al., 2014). 
However, the demonstrated relevance of SFE and of environmental 

TA B L E  3 Test	of	allelic	nestedness	for	Southeast,	Central,	and	
Southwest using microsatellite data

Microsatellite NODF Neutral ± SD

No. 
alleles 
total

No. alleles 
not fixed

AG2* 64.7 61.9 ±	1.5 20 9

AC5 49.5 49.4 ± 1.0 16 5

AC2 65.3 58.3	± 7.8 6 4

AC1 70.8 64.5	± 4.1 7 3

AG1 56.7 67.3 ± 3.8 7 3

B2 65.3 62.2 ± 6.8 6 3

AG5 45.2 45.2	± 0.0 8 2

A1 41.7 51.7	± 9.1 7 2

B3 46.2 45.2	± 0.0 5 1

CT2 66.7 66.7 ± 0.0 3 1

Note: Asterisk	(*)	indicates	nestedness	metric	(NODF)	significantly	
greater than neutral score.
Abbreviations:	Microsatellite,	each	microsatellite	locus;	NODF,	
nestedness metric based on the overlap and decreasing fill; 
Neutral ± SD, generated by randomly shuffling the rows of the 
nestedness matrix; No. alleles total, number of alleles for given 
microsatellite; No. alleles not fixed, number of alleles that vary across 
the three regions.
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variables (Pless et al., 2021) on Ae. aegypti gene flow suggests 
short- distance migration is important. Given the importance of 
short- distance migration, controlling Ae. aegypti in one area should 
help protect areas around it from becoming infested. These short- 
distance migrations occur across the state and country lines (e.g., 
the Mexico samples cluster with U.S. samples at the same longitude, 
not with each other), highlighting the importance of international 
cooperation to prevent further invasions and control vector- borne 
diseases.
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