
Research Article
An Assessment of Lexical, Network, and Content-Based
Features for Detecting Malicious URLs Using Machine
Learning and Deep Learning Models

MalakAljabri ,1,2 FahdAlhaidari ,3 RamiMustafa A.Mohammad ,4 SamihaMirza ,2

Dina H. Alhamed ,5 Hanan S. Altamimi ,2 and Sara Mhd. Bachar Chrouf 2

1Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University,
Makkah 21955, Saudi Arabia
2SAUDI ARAMCO Cybersecurity Chair, Department of Computer Science, College of Computer Science and Information
Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
3Department of Networks and Communications, College of Computer Science and Information Technology,
Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
4Department of Computer Information Systems, College of Computer Science and Information Technology,
Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
5SAUDI ARAMCO Cybersecurity Chair, Department of Computer Engineering,
College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,
Dammam 31441, Saudi Arabia

Correspondence should be addressed to Malak Aljabri; mssjabri@uqu.edu.sa

Received 25 May 2022; Revised 17 July 2022; Accepted 18 July 2022; Published 25 August 2022

Academic Editor: Muhammad Fazal Ijaz

Copyright © 2022Malak Aljabri et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+eWorldWideWeb services are essential in our daily lives and are available to communities through Uniform Resource Locator
(URL). Attackers utilize such means of communication and create malicious URLs to conduct fraudulent activities and deceive
others by creating deceptive and misleading websites and domains. Such threats open the doors for many critical attacks such as
spams, spyware, phishing, and malware. +erefore, detecting malicious URL is crucially important to prevent the occurrence of
many cybercriminal activities. In this study, we examined a set of machine learning (ML) and deep learning (DL) models to detect
malicious websites using a dataset comprising 66,506 records of URLs. We engineered three different types of features including
lexical-based, network-based and content-based features. To extract the most discriminative features in the dataset, we applied
several features selection algorithms, namely, correlation analysis, Analysis of Variance (ANOVA), and chi-square. Finally, we
conducted a comparative performance evaluation for several ML and DL models considering set of criteria commonly used to
evaluate such models. Results depicted that Naı̈ve Bayes (NB) was the best model for detecting malicious URLs using the applied
data with an accuracy of 96%.+is research has made contribution to the field by conducting significant features engineering and
analysis to identify the best features for malicious URLs predictions, compare different models and achieve a high accuracy using a
large new URL dataset.

1. Introduction

+e creation of the World Wide Web (WWW) was revo-
lutionary in the history of the Internet as it enabled anyone
to access the Internet in a way that was previously not

possible. Social networking sites and blogs made it easier for
people to access, share, and communicate information,
expertise, thoughts, and ideas. Businesses expanded and
went global as companies extended their reach through the
Internet. +e Hypertext and Hypertext Markup Language

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 3241216, 14 pages
https://doi.org/10.1155/2022/3241216

mailto:mssjabri@uqu.edu.sa
https://orcid.org/0000-0002-9255-6094
https://orcid.org/0000-0003-4383-0269
https://orcid.org/0000-0002-2612-1615
https://orcid.org/0000-0003-3754-6894
https://orcid.org/0000-0001-6275-1676
https://orcid.org/0000-0001-7452-5473
https://orcid.org/0000-0002-1085-7660
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3241216


(HTML) enabled the efficient creation of web pages, and the
Uniform Resource Allocator (URL) became the mechanism
used by browsers to locate, identify, and retrieve any pub-
lished web resource. +e number of web domains exploded
with the increasing number of Internet users.+is expansion
of the web attracted cybercriminals who distribute malware
and compromise the confidentiality, integrity, and avail-
ability of resources on the web. +e number of malicious
websites has increased dramatically in the past few years,
with these websites often being created by cyber attackers to
access innocent victims’ devices in an unauthorized manner
and even convert numerous computers into bots to launch
cyberattacks on targeted organizations. +rough techniques
such as creating web domains that look like reputable
business web domains, they fool people into surrendering
their data, infect them with malware, and persuade them to
purchase fake goods. Additionally, the number of fraudulent
sites is rising, a case in point being COVID-related sites
giving false information to mislead people. +us, with the
rise of malicious URLs, researchers have presented defense
approaches that are blacklisting-based, anomaly-based, and
heuristic-based. Blacklisting-based methods rely on the
construction of a blacklist of malicious URLs and using it to
identify them. However, this method is only effective against
known malicious URLs and could easily be circumvented as
it requires exact matching [1]. Anomaly-based methods
build classification models using discriminative rules or
features to identify harmful URLs. +e challenge posed by
these methods is selecting the right discriminative features
for it to be effective [1]. Heuristic approaches create sig-
natures of known attack patterns to scan websites.+emajor
downfall of these approaches is that they are unable to detect
new attacks and cybercriminals can easily evade the pre-
defined signatures [2].

Intelligent approaches, such as Machine Learning (ML)
and Deep Learning (DL), have recently become widely
popular in the research community to tackle challenges in
various domains [3]. Such intelligent approaches are in-
creasingly applied to data in order to predict the future and
gain key insights that aid the decision-making process. ML
and DL are used in a plethora of applications mainly for the
prediction of new data output from historical data inputs.
ML is a field in Artificial Intelligence (AI) that uses data and
algorithms to imitate the way humans learn. It improves
over time and with experience. DL, a subfield of ML, focuses
on how the human brain works and simulates the structure
of the brain and connecting neurons. Statistically, these
intelligent algorithms can be used in classification problems,
where the predictive models conjecture the class label of a
given input, as well as in regression problems that entail
predicting a continuous output value based on provided
inputs. Network security is a very challenging field that
increasingly utilizes the power of ML and DL to protect the
confidentiality, integrity, and availability of networks and
data. In this paper, we focus on using these intelligent
techniques to detect malicious URLs. +ese techniques
depend on the type of data and the set of extracted features
that they are trained on. +us, it is necessary to extract the

right set of features to discern malicious and benign URLs
using features engineering and selection methods.

Our aim is to create a model with high accuracy that
prevents the attackers from conducting fraudulent activities
and deceiving others by creating deceptive and misleading
websites and domains. +is paper focuses on using a new
dataset, extracting useful features from it, and selecting the
most optimal features using different features selection
techniques to build and compare the accuracy of a set of
intelligent models. Hence, the focal point of our study was to
extract the most essential features for malicious URL clas-
sification and to identify which features are the most ef-
fective in carrying out accurate predictions on identifying
malicious URLs.

+e paper makes the following key contributions:

(i) Extracted a total of 39 features belonging to lexical-
based, content-based, and network-based cate-
gories. +ese three categories of features were
engineered from a recently published dataset, in a
way to the best of our knowledge have not been
engineered in previous studies.

(ii) Compared with other studies, we reached com-
parative performance results with larger size of URL
samples and a reasonable number of features that
were selected using different features selection
algorithms.

(iii) Conducted a comparative performance evaluation
of different ML and DL models for classifying URLs
as benign or malicious. Random Forest (RF) and
Näıve Bayes (NB) where applied as ML models,
while Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) were applied as
DL models. +e best performance was achieved
using the NB classifier (with an accuracy of 96%).

+e paper is organized as follows: Section 2 provides a
review of the literature and highlights our contributions.
Section 3 discusses the methodology used in our experi-
mentation, including the dataset description, the pre-
processing stage, the intelligent methods applied, and the
evaluation metrics used. Section 4 discusses and compares
the experimental results of the work. Finally, Section 5
concludes the paper and examines the possible future work.

2. Literature Review

Several studies have been performed with the aim of
detecting malicious URLs using data mining approaches,
some of which are reviewed and summarized below. +ere
are various types of features that can be extracted from the
URL. +e most used features can be classified into three
main classes: Lexical-based, Content-based, and Network-
based. Lexical features are collected through lexical scanning
and are obtained from the URL name/URL string itself.
Content-based features reflect the web page content, in-
cluding its HTML tags, iframes, lines, hyperlinks, JavaScript
functions, and keywords that are mostly extracted by

2 Computational Intelligence and Neuroscience



crawling the web page using tools such as Selenium Web-
Driver. Network-based features combine Network, Domain
Name systems (DNS), and host-based features and include
latency, DNS query data, domain registry data, payload size,
WHOIS queries information about domain names, and IPs.
+e following is a summary of research papers grouped
according to the class of features used in the studies where
we considered three classes of features which are lexical,
content-based, and network-based features.

Urcuqui et al. [5] focused on the recognizing malicious
URLs using ML techniques. +eir goal was to compare the
performance of the classifiers when choosing specific fea-
tures selected through CfsSubsetEval (CSE) and the per-
formance when all the features were used. +e dataset used
was obtained from [6] and contained 1,781 records and 20
URL lexical, content-based, and network-based features.+e
features selection process was conducted using the CSE
method, which entails scaling the importance of attributes
based on the predictive capability of attributes as well as their
redundancy degree. +e authors used four classifiers,
namely, K Nearest-Neighbour (KNN), RF, BayesNet, and
J48. +e performance measures were precision, recall, and
accuracy. +e best result achieved was by RF with 95%
accuracy, 95.4% recall, and 95.3% precision. Along the same
line, Kumi et al. [7] proposed a method to classify URLs as
either malicious or benign using a dataset collected by
Manjeri et al. [6]. +e dataset was divided into 1,565 Benign
URLs and 216 Malicious URLs. +e researchers applied
oversampling on the data to achieve the same number of
samples of both the classes using the Synthetic Minority
Over-Sampling (SMOTE) technique and a features selection
technique named Recursive Feature Elimination (RFE).
+ey used five classification algorithms, namely, RF, Deci-
sion Trees (DT), Logistic Regression (LR), KNN, and
Support Vector Machine (SVM), and the evaluation metrics
used were accuracy, precision, and recall. +e highest ac-
curacy of 96% was produced by RF.

Some studies did not use all three types of features
(lexical, content, and network). For instance, McGahagan
et al.’s [8] research used only lexical and content features to
categorize URLs as malicious or benign using a data mining
approach known as classification based on association
(CBA). +e researcher’s dataset was collected from several
sources. Benign URLs were collected from the top 500 sites
by crawling from ALexa top sites. Malicious URLs were
collected from VxVault, OpenPhish, and URLhaus. CBA
consists of a classifier builder (CBA-CB) and rule generator
(CBA-RG). +ey used correlation as a features selection
technique, with the number of features selected being 12.
+ey used precision, confusion matrix, recall, and accuracy
to evaluate the proposed approach. +e best result was a
95.83% accuracy rate achieved by the CBA model with low
false positive and negative rates in the classification of URLs.
Patgiri et al. [9] aimed to build several detection models
using unsupervised and supervised learning algorithms over
several sampling and feature transformation scenarios. +ey
based their research on lexical and content-based features,
removing any additional features by using the eXtreme
Gradient Boosting (XGBoost or XGB) algorithm and Gini

Impurity to calculate feature importance resulted in the
selection of 34 features. +ey created three scenarios for
sampling for the imbalanced dataset, namely, No-sampling,
Under-sampling, and Over-sampling. +e researchers built
two models based on unsupervised learning algorithms,
which are Autoencoders (AE) and SVM. +ey also built
eight models based on supervised learning algorithms,
which are Adaptive Boosting (AB), Extra Trees (ET), RF,
Gradient Boosting (GB), XGB, Bagging Classifier (BC), the
Voting classifier (V), and KNN. +ey achieved an accuracy
of 98.03% by the V classifier. Kim et al. [10] used lexical and
network-based features and applied ML to detect malicious
URLs. +e team collected a dataset of malicious and non-
malicious URLs considering only the lexical and network-
based features. To extract these features, the team first used
tokenization to break the URL into tokens or words followed
by the features extraction method to calculate the length of
the string. A bag of words was applied to obtain the number
of sensitive words. RF and SVM were built using three types
of train/test split: 80/20, 70/30, and 60/40. +e 80/20 split
gave good results with RF outperforming SVM, obtaining an
accuracy of 93.3%.

In a study that focused only on extracting malicious
paths based on content-based features Khan et al. [11]
proposed a framework called WebMon. It consists of a
database, queue server, and containers with a WebKit2
browser engine. +e researchers introduced 11 content-
based type features to detect exploit kits (EKs) and malicious
URLs. EKs descript malicious codes to get system privileges
on the victim’s PC and install malware. +e dataset con-
tained 160 records, with 55 malicious records and 105
nonmalicious records. +e detection accuracy of WebMon
was evaluated using YARA rules and the ML classifier.
YARA rules detect unique properties while ML compre-
hensively detect previously hidden exploit kit (EKs) variants
that avoid pattern detection. For example, obfuscated pages
are mainly exposed by an ML classifier and nonobfuscated
pages are found by the YARA rules. +e used ML classifiers
were RF, SVM, NB, LR, Bayes Net, and J48. +e proposed
model (WebMon) has a detection accuracy rate of 98%.

Some researchers used only lexical features in their
studies to assess intelligent models. Atrees et al. [12] used the
chi-square and ANOVA F-value to select the most im-
portant lexical features from various datasets. +e re-
searchers’ goal was to discover the most significant features
of URLs. +e researchers extracted 106 lexical features and
used two scoring functions for features selection on each
dataset to find the best 60 features. +ey found 47 features
that were common to the two datasets. +e researchers used
several ML algorithms, including LR, KNN, SVM, and
Ensemble learning algorithms. +ey measured performance
using the confusion matrix, accuracy, precision, recall, and
F1 score. +e weighted average accuracy obtained for the
model was 96.60%. To enhance the detection rate of mali-
cious URLs, authors in [14] introduced a combination of ML
approaches with AdaBoost as an ensemble learner algo-
rithm. With the usage of phishing URLs dataset from UNB
repository, results showed an improvement in the detection
rate where decision tree (J48) algorithm with AdaBoost

Computational Intelligence and Neuroscience 3



achieved the highest accuracy of 97.89%. In another study
conducted by Wei et al. [15], the researchers developed a
method to classify the URLs according to whether they were
normal or malicious using the Neural Network. +e dataset
used in this research was CICANDMAL2017 [16], and 8
lexical features were mined from URL. +e researchers used
a feed-forward neural network with multiple hidden layers
to detect the type of URL. Neural network algorithms were
able to classify the URL attack type according to one of five
types of malicious URLs, namely, spam, phishing, deface-
ment, malware, and benign. After several runs with different
dataset sizes and different numbers of hidden layers, the best
results were obtained with 500 data rows and 25 hidden
nodes; the neural network was able to detect achieving an
accuracy of 98.48%.

Along the same lines, Saleem Rajaet al. [17] proposed a
model to detect malicious URL addresses using CNN. +e
level of accuracy achieved was 99.98% using the CNNmodel.
Chen et al. in [18] proposed a model for detecting malicious
URLs based on CNN, with the usage of autoencoder to
represent URLs.+e features have been represented by using
natural language process (NLP) for URL tokenization and
then training an autoencoder for representing URL features.
+e experimental results showed high performance of 98.2%
in terms of the accuracy on HTTP CSIC2010 dataset.
Furthermore, Nargesian et al. [19] carried out a study to
detect malicious URLs using lexical features. +e dataset
used was the UNB dataset. +e number of features selected
was 27 and were selected by correlation analysis, these were
reduced to 20. +e classifiers used in this study were RF, LR,
kNN, Näıve Bayes (NB), and Support Vector Classification
(SVC). +e results showed that the RF classifier outperforms
other classifiers in terms of accuracy by 99%. Li et al. [20]
sought to identify malicious URLs from benign URLs using
ML. +e dataset contained a total of 26,054 URLs, half of
which were malicious. It contained 41 features that were a
mix of Alexa-based, network-based, and content-based
features. Alexa provides services to Amazon. It organizes the
behaviors of users on the Internet using big data and
monitors the traffic of all domains. +e researchers used two
features selection techniques: the ANOVA and XGBoost
algorithms. +is study used four classic ML algo-
rithms—SVM, KNN, XGBoost, and DT. As evaluation
metrics, it used precision, recall, F1_score, and accuracy.+e
dataset that used the XGBoost model achieved 99.98% ac-
curacy using the first 9 features only.

Features engineering is a fundamental concept in data
science, and it still remains a time-consuming and chal-
lenging process [21]. In URL classification problems, most
studies focused on improving ML and DL classifiers. Few
studies focused on features selection and extraction
[8, 22–27, 37]. Most of these studies either applied lexical
features only, content-based only, or network-based. +ey
did not apply combination of all these three types in order to
perform predictions using ML/DL models. Taking into
account the idea that features engineering plays a vital role in
the performance of classifiers, our paper aims to extract
different URL features, namely, lexical, network-based, and
content-based features to help the classifier identify

malicious URLs accurately. We apply these methods on a
dataset constructed by Alkhudair et al. [4], which to the best
of our knowledge has not been used in the papers mentioned
above to apply ML and DL classification models. Further-
more, we carry out a series of experiments to select the
features selection technique that yields the best results with a
high level of accuracy. Based on the set of experiments
performed, we select a combination of three features se-
lection techniques, namely, ANOVA, chi-square, and cor-
relation, to build the final dataset to feed to the intelligent
models. In our research, we apply several ML and DL
classifiers and provide comparative performance analysis.
Combining more than one category of features yields better
results.

Some researchers have investigated other features in
order to analyze and enhance the models’ performance.
Mamun et al. [46] used click traffic data collected from Bitly
over 600,000 short URLs and analyzed the traffic of the
malicious and nonmalicious URLs, the best achieved result
was using Random Tree algorithm with an accuracy of
90.81% and F-measure value of 91.3%. Al-Aidaroos et al. [47]
focused on forwarding-based features of the URLs in the
social media networks. Totally, 100,000 messages from Sina
Weibo platform were collected and used to build 3ML
models: Bayes net, J48, and RF. +e average achieved ac-
curacy was 83.21%, the average F-positive rate was 10.03%,
and the average F-measure was 86%. Similarly, Dogra et al.
[48] also considered the pattern of the URLs posting in
twitter social media platforms by analyzing the behavior of
the URLs posting users and URLs clicking users. Using
twitter APIs combined with Bitly APIs they collected around
7 million tweets that contain shortened URLs created by
Bitly and tried different sets of features including Average
clicks, Posting count, Median followers, Median friends,
Score function Score Category. +e best achived accuracy
reached 86%.

Comparison with previous studies is challenging because
different datasets, features, classifiers, and performance
metrics were used. According to the literature review, the
best results were achieved by Li et al. [20] with an accuracy
rate of 99.99% using CNN. However, their dataset contained
26,054 records, which is less than half the size of our dataset
that contained 66,506 records and still achieved a compatible
result with an accuracy level of 96.01%. Further, they did not
use lexical features of the URLs to make predictions and only
investigated the network-based, and content-based features.
In our paper, we focused on investigating combination of
network-based, lexical-based, and content-based features,
which are essential in order to effectively make URL pre-
dictions [9].

We conclude from the previous studies that a general
methodology was applied for building the intelligent models
as depicted Figure 1.

3. Methodology

Our research examined and classified websites as benign or
malicious using a new dataset and extracting useful features
from it to obtain a high level of accuracy. We followed a

4 Computational Intelligence and Neuroscience



consistent methodology that is included in all studies, which
includes 4 main set-ups: Data acquisition, Preprocessing,
Classification, and Evaluation. First, we analyze the dataset
to understand the existing features and determine the re-
quired features. Second, we extracted more useful features
from the dataset. We then applied further preprocessing
techniques to prepare the data to build both ML and DL
models. Finally, we analyzed the results. Figure 2 shows a
diagrammatic representation of themethodology carried out
in experimentation and discussed in more details in the
following subsections.

3.1. Dataset Description. +e dataset employed was the
Malicious and Benign Webpages Dataset, a publicly avail-
able dataset released by Singh and Kumar in 2020 [4]. +e
data were collected by crawling the Internet using the Mal
Crawler tool [28], and the labels were verified (as good or
bad) using Google Safe Browsing (API). +e dataset con-
tained various attributes from websites, namely, URL, IP
address, JavaScript code, obfuscated code, geographical lo-
cation, top-level domain, and HTTPS, all of which can be
useful for classifying a web page as either malicious or
benign.+e dataset also included raw page content including
the JavaScript code that can be used to extract further at-
tributes. +e dataset contained two sets: one set of webpages
represents the train data which comprised 1.2 million rec-
ords and 11 attributes and the other set of webpages rep-
resent the test data, which comprised 0.364 million records
and 11 attributes. In the train dataset, 27,253 were labelled
malicious and 1,172,747 were labelled benign. In the test
dataset, 353,872 URLs were labelled benign and 8,062 were
labelled malicious. Table 1 shows a short overview of all the
features involved in this dataset.

3.2. Preprocessing Phase. A fundamental phase in ML and
DL models is the preprocessing phase, which prepare the
data for the application of classification techniques. Figure 3
demonstrates the preparation steps including under-
sampling, features’ extraction, label encoding, and features’
selection. +ese steps are explained in more detail in the
following sections.

3.2.1. Undersampling the Train Dataset. Randomized
undersampling is a technique used to solve a class imbalance
problem in the dataset. It refers to the process of decreasing
the number of samples in the majority class to balance it out
with the minority class in the dataset. In this work, our train
dataset contained imbalanced classes as most of the sample
records were benign (1,172,747 out of 1.2 million), and only
27,253 were labelled malicious. Following the randomized
undersampling process, the train dataset ended up

comprising 27,253 malicious records and 27,253 benign
records; thereby, bringing the total number of records in the
train dataset to 54,506. In the case of the test data file, from
the 300K records present in the original file, 12000 records
were selected at random. Hence, all in all, the train data file
contained 54,506 records, and the test data file contained
12000 records.

3.2.2. Features’ Extraction. After analyzing the dataset, we
applied different techniques to engineer and extract the most
useful features from the dataset. Apart from the network-
based features that were already present, we extracted URL-
based lexical features and web page content-based features.

For extracting the lexical features that reflect the textual
properties of URL, namely, the special characters, path
extension, path, host, and URL lengths, etc., we used several
libraries in Python and Scikit Learn to extract the following
features:

(i) Special Characters: generally, for URL encoded
attacks, malicious users utilize special symbols to
bypass validation logic. Hence, we counted the
presence of each of these symbols, e.g., the dot, @,
&, /, −,� , \, and ? in the URL.

(ii) Special words: we checked the presence of special
names in the URL such as ebayisapi, getImage, log,
and jpg and saved it as a Boolean feature.

Undersampling (train data file)

Feature Extraction (Lexical and Content Based)

Label Encoding (on categorical features)

Feature Selection

Train File: 56 K samples 
Test File: 12 K samples

Random
Forest

URL Dataset

Data
Preprocessing

phase

Classification phase

Naive
Bayes LSTM CNN

Accuracy

Evaluating Final Results

F-score Precision Recall

Figure 2: Experiment methodology.

Data Collection
Phase

Data
Preprocessing

Phase

Classification
Phase

Evaluation
Phase

Figure 1: Generic flow diagram for methodology.

Computational Intelligence and Neuroscience 5



(iii) Path length: the path represents the exact location of
a file, page, post, or other assets. For example, http://
www.astonmartin.co.uk/models/index.html, http://
www.astonmartin.co.uk comprises the hostname
portion of the URL and models/index.html repre-
sents the path. Also, we extracted the length of the
path, number of dots in the path, and slashes.

(iv) Host length and digits in host: the host refers to the
name of the webserver. host_Presence_of_digit is a
new feature that checks the presence or absence of
digits in the host as a Boolean. Using python, we
first extracted the hostname from the URL feature,
and we then extracted the host length and digits in
the hostname from this extracted feature.

(v) URL length: represents the total length for the whole
URL.

(vi) Digit and letter count: count_digit and count_letter
are new features that represent the total number of
letters and digits in the URL.

For the content-based features that mainly refer to the
JavaScript functions and HTML tags that could be utilized
by attackers to exploit websites, we extracted the following
features:

(i) Presence of iFrame on the website: the HTML tag
called iFrame has been used in a number of attacks
to download malicious JavaScript exploits [23, 29].
In our chosen dataset, we searched for the presence
of this tag in the content features and stored its
presence or absence in a new feature called pre-
sence_iFrame as a Boolean.

(ii) Presence of suspicious JavaScript Function:
(iii) Eval function: this function is used by attackers to

generate malicious code in malicious websites at
runtime to thwart detection [30]. In the dataset, we
searched for the presence of this function eval() in
JavaScript code in the content features and stored
its count in a new feature called count_eval as a
numerical attribute.

(iv) Escape function: hackers generally encode mali-
cious code using this function to later decode it and
initiate attacks. In the dataset, we searched for the
presence of this function escape() in JavaScript
code in the content features and stored its count in
a new feature called count_escape as a numerical
attribute.

(v) Unescape function: after encoding the malicious
code using escape(), attackers generally decode it
using the unescape() function and eventually
initiate attacks. +erefore, the number of escape
and unescape functions is a good indicator of
malicious activity [31]. In the dataset, we searched
for the presence of this function unescape() in
JavaScript code in the content features and stored
its count in a new feature called count_unescape as
a numerical attribute.

Table 1: Features present in the dataset.

# Attribute Description
1 url URL of the website
2 ip_add +e IP address of the website
3 geo_loc +e geographical location where the website is being hosted
4 url_len Length of the URL of the website
5 js_len Length of JavaScript code present on the website
6 js_obf_len Length of the obfuscated JavaScript code present on the website
7 tld Top-Level domain of the website
8 who_is WHO IS domain information is complete or no
9 https Website is HTTPS protocol using
10 Content Raw web page content with JavaScript code
11 Label Label for indicating if the website is malicious or benign

URL Database

Undersampling Data

Type of feature

Network - BasedLexical - Based Content - Based

Convert categorical feature into numeric

Feature extraction

ANOVA CorrelationChi-square

Feature selection technique

Figure 3: Diagrammatic representation of preprocessing phase.

6 Computational Intelligence and Neuroscience

http://www.astonmartin.co.uk/models/index.html
http://www.astonmartin.co.uk/models/index.html
http://www.astonmartin.co.uk
http://www.astonmartin.co.uk


(vi) Find function: in order to decrypt malicious code
at runtime, attackers integrate find() along with
eval() and unescape() functions [31]. +erefore, we
searched for the presence of this function find() in
JavaScript code in the content features and stored
its count in a new feature called count_find as a
numerical attribute.

(vii) Exec, Search, and Link functions: we searched for
the presence of these further suspicious functions
used by attackers in JavaScript code in the content
features and stored its count in new features as
numerical attributes.

(viii) Total count of the suspicious functions: since all
the above-mentioned functions are used by at-
tackers for cross-site scripting and malware dis-
tribution [12], we added up the counts of all these
functions that were present in the JavaScript code
in the content features and stored its final count in
a new feature called count_all_functions as a nu-
merical attribute.

(ix) Presence of Windows.open function: the Win-
dows.open functions are generally used for ads
popups and can be used to inject attacks on
malicious sites. We checked the presence of this
popup in the content and stored it as a Boolean
value.

(x) Line count: the total count of the lines presents in the
content. It was extracted by checking the presence of
the newline symbol “\n” in JavaScript code in the
content features and stored its count in a new feature
called lines_count as a numerical attribute.

+e host-based features, namely, the IP address, geo-
graphical location, who_is properties, etc. are already
present in the dataset. At the end of the features extraction
process, the features presented in Table 2 below were
extracted from the dataset.

3.2.3. Converting Categorical Features to Numerical.
After the undersampling of data and extraction of useful
features, we performed further preprocessing namely label
encoding to convert all the categorical data into a numerical
form and convert all categories into numbers. +e target
variable (named label) was categorized as good or bad. After
the preprocessing where good was made as 0 and bad as 1,
the variable was converted to numeric form. Similar steps
were applied for who_is and HTTPS features.

3.2.4. Features’ Selection. Features selection is the technique
used to select a subset of the most relevant columns or
features in a dataset. Features selection helps the ML/DL
algorithms be more effective and efficient as it uses less space
and reduces time complexity. It also reduces the high data
dimensionality. Also, irrelevant features can mislead ML/DL
algorithms and result in poor performance. For our ex-
perimentation, we considered three features selection
techniques:

(1) Analysis of Variance (ANOVA). is a popular statistical
method for features selection. ANOVA is used to analyze the
variation in a response variable that is measured under
various conditions specified by discrete factors (classification
variables) [32]. +e test statistic for ANOVA is given by (1)
below:

F �
􏽐nj Xj − X􏼐 􏼑

2
/(k − 1)

􏽐 􏽐 X − Xj􏼐 􏼑
2
/(N − k)

. (1)

(2) Chi-square. is a statistical procedure used by researchers
to measure the difference between the observed results and
the expected outcome. In other words, it is used to check the
independence of two variables [33]. Where O signifies the
observed value and E reflects the expected value, and the chi-
square measures how these two variables deviate from each
other using :

χ2 � 􏽘
Oi − Ei( 􏼁

2

Ei
. (2)

+is formula gives a chi-square value that can be used to
decide if the feature is dependent on the response and if it
can be selected. +e higher the chi-square value, the more
dependent the feature, which means that it can be selected
for application in the model.

(3) Correlation. is a statistical term that is used to measure
how close two variables are to having a linear relationship
with each other. It is used to find the association between all
the features and the target class feature. If the features are
linearly independent (uncorrelated), then the correlation
coefficient is 0. If the features are linearly dependent (cor-
related), then the correlation coefficient is ±1. Assuming that
there are two samples X and Y where sample X contains m
sample observations (x1, x2, .. . ., xm) and sample Y contains
m sample observations (y1, y2, . . ., ym) [34], the Pearson
correlation coefficient is given by Eq. (3) below:

r �
N􏽐 xiyi − 􏽐 xi 􏽐 yi( 􏼁

�����������

Nx2i − 􏽐 xi( 􏼁
2

􏽱 �����������

Ny2i − 􏽐 yi( 􏼁
2

􏽱 . (3)

In our work, 39 original features of the dataset and 1
classification label feature were used. To select the most ef-
fective method for features selection, we performed a set of
experiments by constructing 5 instances of the dataset using a
subset of features, as depicted in Figure 4. +e first three
instances of the datasets were constructed using correlation,
ANOVA, and chi-square respectively to score the best fea-
tures for features selection using these individual methods.
+e ranked lists of features were generated based on these
scores to select a subset containing the best discriminative
features.+e fourth instance of the dataset was constructed by
taking the common best features from the dataset instances
that used ANOVA and chi-square as scoring functions for
features selection. +e last instance of the dataset was con-
structed by taking the common best features between the
three constructed dataset instances that used correlation,

Computational Intelligence and Neuroscience 7



ANOVA, and the chi-square. We then analyzed and com-
pared the results of all the five instances of the dataset after
applying DL and ML models, namely, CNN, LSTM, NB, RF,
on each dataset. After analyzing the result, we selected the
dataset containing the common best features from the three
methods: ANOVA, chi-square, and correlation.

Table 3 shows the final set of selected features.

3.3. Classification Phase. In order to train and test the
dataset for malicious URL detection, we evaluated several
ML and DL models such as NB, RF, LSTM, and CNN [35].

(i) RF is one of the supervised ML techniques, and it is
a collection of random trees. RF is a decision tree
algorithm that extends the popular decision tree
technique by combining a greater number of de-
cision trees. +e goal of this method is to reduce the
variance of the innovative decision tree. RF is one of

the most popular classifiers due to its ease of use and
adaptability since it can handle both classification
and regression problems [38].

(ii) NB is a probabilistic model that is based on the
Bayesian theorem. +e influence of a feature on a
class is assumed to be independent of the values of
other features by naive Bayes classifiers. +is con-
ditional independence streamlines the algorithm
while maintaining accuracy. +e NB equation is
presented by equation (4) below [38].

P(y | x) �
p(x | y)p(y)

p(x)
. (4)

(iii) CNN is a type of DL technique that has shown to be
highly useful in recent years due to its ability to
exchange weights by exploiting the local connec-
tions between surrounding values in both image and

Table 2: Final features in the dataset after features extraction.

# Attribute Description
1 url_len Length of the URL of the website
2 geo_loc +e geographical location where the website is being hosted
3 tld Top-Level domain of the website
4 who_is Who is domain information is complete or no
5 https Website is HTTPS protocol using
6 js_len Length of JavaScript code present on the website
7 js_obf_len Length of the obfuscated JavaScript code present on the website
8 count_link Count appearance of JavaScript link() function in content
9 count_eval Count appearance of JavaScript eval() function in content
10 count_exec Count appearance of JavaScript exec() function in content
11 count_unescape Count appearance of JavaScript unescape() function in content
12 count_search Count appearance of JavaScript search() function in content
13 count_find Count appearance of JavaScript find() function in content
14 count_escape Count appearance of JavaScript escape() function in content
15 count_all_functions Count of all the above 7 suspicious functions in content
16 Presence_iframe +e presence of the iFrame tag is checked in content
17 count_/ Count “/” symbols in URL
18 count_dot Count “.” symbols in URL
19 Count_& Count “&” symbols in URL
20 Count_@ Count “@” symbols in URL
21 Count_- Count “−” symbols in URL
22 count_� Count “�” symbols in URL
23 Count_? Count “?” symbols in URL
24 Count_; Count “;” symbols in URL
25 count_digit Count total digits in URL
26 count_letter Count total alphabetical letters in URL
27 presence_ebayisapi Check presence in URL
28 presence_getImage Check presence in URL
29 presence_jpg Check presence in URL
30 presence_log Check presence in URL
31 count_path_dots Count dots in URL path
32 path_length Length of the URL path
33 count_path_slash Count backslashes in URL path
34 host_length Length of the hostname in URL
35 host_Precense_of_digit Check digits in the hostname
36 count_symbols Count all symbols in the URL
37 presence_obfuscated_code Check the presence of obfuscated JavaScript code
38 presence_Window.open() +e presence of Window.open() function is checked in content
39 lines_count +e number of lines of the content
40 Label Label for indicating if the website is malicious or benign

8 Computational Intelligence and Neuroscience



sequence data. 2D or 3D convolutional layers are
typically utilized with the pictures. However, a 1D
convolutional layer has been employed to work with
text, which has shown to be highly successful,
mainly when dealing with time-series or sequence
data [39, 40]. CNN reduces the requirement for
manual features extraction because the network
learns the features immediately. CNN can be
retrained to do new tasks that build on previously
trained networks [41].

(iv) LSTM is a type of recurrent neural networks (RNN)
that can learn long-term dependencies. +e goal of
designing this algorithm is to avoid the problem of
long-term dependency [42]. Although LSTMs have

a chain-like structure, the repeating module has a
different structure [43].

3.4. EvaluationCriteria. A number of metrics can be used to
compare the performance of different ML and DL classifiers.
We used confusion matrix, accuracy, precision, recall, and
F-score to evaluate and compare the performance of the
applied models. +e confusion matrix, which is used to
calculate the accuracy of the classifier, is a four-way table of
predicted and actual classifications done by the models.

(i) True Positive (TP): correctly predicting benign
URLs as benign.

(ii) False Positive (FP): incorrectly predicting benign
URLs as malicious.

(iii) True Negative (TN): correctly predicting malicious
URLs as malicious.

(iv) False Negative (FN): incorrectly predicting mali-
cious URLs as benign.

Accuracy is the ratio of correctly predicted classes to the
total number of instances and is computed by (5) below:

Accuracy �
TP + TN

(TP + TN + FP + FN)
. (5)

Precision is finding out how many of the classes pre-
dicted as positive are actually positive and is computed by (6)
below:

Precision �
TP

(TP + FP)
. (6)

ANOVA Chi-Square Correlation Common features
ANOVA, Chi-Square

Common features
ANOVA, Chi-Square,

Correlation

Constructing 5 datasets

Applying ML and DL models

Comparing Results

Choosing the Dataset having Common features
ANOVA, Chi-Square, Correlation

Feature Selection
Techniques:

Dataset with all
features

Figure 4: Selecting features.

Table 3: Final set of selected features.

# Feature
1. presence_obfuscated_code
2. js_len
3. js_obf_len
4. count_All_Functions
5. count_find
6. count_unescape
7. count_escape
8. who_is
9. https
10. count_eval
11. presence_iFrame
12. count_search
13. presence_Window.open()
14. host_length
15. Count_-

Computational Intelligence and Neuroscience 9



Recall is the ratio of classes predicted correctly out of all
the positive classes and is computed by (7) below:

Recall �
TP

(TP + FN)
. (7)

F-score helps measuring both recall and precision si-
multaneously and is computed by (8) below:

F − score �
2∗Recall∗Precision
Recall + Precision

. (8)

4. Results and Discussion

4.1. Experimental Setup. As discussed in the methodology
section, the dataset underwent a preprocessing phase, where
different steps, namely, features’ extraction, label encoding,
features’ selection, and then undersampling the train data
were implemented. Finally, the dataset contained 15 features
and 1 target label, 54,506 samples of URLs for the training
set, and 12000 samples of URLs for the testing set labelled
either benign or malicious. At the end of these steps, the
dataset was ready to feed into the ML models, namely, the
RF, NB, as well as different DL models, namely, the CNN
and LSTM. All the models were built using python and Scikit
Learn. +e experiments for the DL models were carried out
in a Google Research product called the Google Colab
environment. Whereas, the ML models were built in Jupyter
Notebook python coding platform. Our DL models are
trained for 1,000 epochs, wherein each epoch all the features,
along with their corresponding target label (0 or 1), are fed in
batches of 32. We used a function called early stopping that
stops the iteration before 1,000 epochs since too many
epochs lead to overfitting and too few may lead to under-
fitting. Hence, early stopping ensures that the model stops
training once its performance stops improving on the
training set provided. +e early stopping function monitors
the model’s loss and terminates iteration when the loss does
not decrease. Table 4 below demonstrate the parameters
settings applied for all models. +e parameters were defined
according to a pilot study that showed the best performance
using such parameters.

5. Results

In order to demonstrate the effectiveness after training, we
validated our models on a test set that contained 12,000
URLs. We evaluated our models using various evaluation
metrics, namely, accuracy, precision, recall, and F1 score.
Table 5 shows the classification results obtained for all the
models.

From the results table, we see that all the models gave
very close values. Looking at Figure 5, we see that NB
achieved slightly higher values than the other models,
achieving accuracy of 96.01%. +e highest achieved preci-
sion of 95.64% was by NB, which was followed by RF, CNN,
and then LSTM, which obtained precision between 87.24%
and 87.31%. However, the recall achieved by NB was the
lowest as all the other models achieved a recall of 100%.
Finally, the F-score achieved by all the models was in the
similar range from 93.18% to 93.93%.

+e correct identification of benign URLs is considered
TP, whereas the recognition of malicious is identified as TN.
Similarly, the wrong identification of malicious URLs as
benign is referred to as an FN, and the wrong identification
of benign URLs as malicious is called an FP. All of our
models were trained independently, and then were assessed
based on their confusion matrices. A model will be more
accurate if it has more TP and TN (or fewer FN and FP) [45].
+e confusion matrices associated with the models are
presented in Figures 5–8. +ese confusion matrices are also
used to calculate metrics such as precision, recall, and the F1
score. From these matrices, it can be seen that NB performed
better than other models. In NB, the instances of TP and TN
were more, compared with the other models.

Table 4: Parameters’ settings applied for all classifiers.

Model Parameter Value
RF Number of trees 100

CNN

Activation function in hidden layers ReLU
Number of neurons in output layer 1
Activation function in output layer Sigmoid

Dropout 0.2, 0.5
Batch size 32

Number of layers 4
Number of neurons in hidden layers 32, 64, 64

LSTM

Activation function in hidden layers Tanh
Number of neurons in output layer 1
Activation function in output layer Sigmoid

Dropout 0.1
Batch size 32

Number of layers 3
Number of neurons in hidden layers 8, 8

Table 5: Results of the experiments.

Accuracy Precision Recall F-score
CNN 0.9513 0.8724 1.00 0.9319
LSTM 0.9514 0.8728 1.00 0.9321
NB 0.9601 0.9564 0.9225 0.9391
RF 0.9515 0.8731 1.0 0.9322

168

310 3690

7832

Predicted label

Ac
tu

al
 la

be
l

7000

6000

5000

4000

3000

2000

1000

0
0

1
1

Figure 5: Performance analysis of NB.

10 Computational Intelligence and Neuroscience



As seen from Table 5, NB obtained the highest accuracy
and precision but the lowest recall. NB uses the concept of
conditional probability formulated by Bayes +eorem. In
more concrete terms, each attribute/feature is considered
independently on the class. +erefore, NB is known to work
well in classification problems largely because it reduces the
curse of dimensionality. +e conditional probability ensures
that the outcome of one feature on the class label does not
interfere with the outcome of another attribute on the class
label. Likewise, in our experiment, NB was able to correctly
predict 7832 benign labels, as well as correctly predict 3690
malicious labels in the test dataset. However, it incorrectly
predicted 310 malicious websites as benign and 168 benign
websites as malicious as shown in Figure 5. +e per class
values of accuracy, precision, and recall are included in
Table 6.

+e second highest accuracy and recall were obtained by
RF, but it obtained a low precision score. RF is an ensemble
model that contains multiple decision trees that are known
to split the data into data groups based on the features until a
prediction is reached. RF improves the model performance
because it decorrelated the features by splitting the tree into
feature subsets at each consecutive node. +is ensures that
the variance is averaged out and the performance obtained
in predicting the classes is high. Hence, our RF model was
able to correctly predict 7417 benign URLs as well as 4000
malicious URLs. On the other hand, it incorrectly predicted
583 benign URLs as malicious and did not incorrectly
predict any malicious URLs as benign as seen in Figure 6.
+erefore, RF can be a good choice to make malicious URLs
predictions as it was successfully able to identify all mali-
cious domains correctly. Table 7 gives the per class metrics
for RF.

Following that, LSTM came behind and achieve similar
results. LSTMs are a more sophisticated version of RNNs,

which have the advantage of remembering past data more
easily. +e use of LSTM is frequently preferred over RNN in
practice since it is more computationally efficient where it
was invented to solve a problem that standard RNNs have,
namely the vanishing gradient problem. However, in our
experiments, the outcomes of these two models were
identical, indicating that there is no difference between the
models in our case unless we are dealing with a time-series
situation with short/long-term dependency. +e results of
LSTM showed a correct prediction of 7417 benign labels, as
well as correctly predict 4000 malicious labels in the test
dataset. However, it incorrectly predicted 583 benign
websites as malicious and did not incorrectly predict any
malicious URLs as benign as shown in Figure 7. Further, the
different metrics per class are included in Table 8 for LSTM.

+e lowest accuracy was obtained by the CNN model,
which is a type of neural network with one or more con-
volutional layers that are typically used for image processing,
classification, and segmentation. To process and train the
neural network, CNN needs a massive dataset that could be
one factor for being the least performance model compared
with other models in this study. CNN is also more typically
associated with visual imagery than with tabular data, which
could be another factor. In our experiment, CNNwas able to
correctly predict 7415 benign labels, as well as correctly
predict 4000 malicious labels in the test dataset. However, it

Table 6: Per class metric values for NB.

Class Precision Recall f1 score
Benign 0.96 0.98 0.97
Malicious 0.96 0.92 0.94

Predicted label

7000

6000

5000

4000

3000

2000

1000

0

Ac
tu

al
 la

be
l

0
1

10

7417

4000

583

0

Figure 6: Performance analysis of RF.

Table 7: Per class metric values for RF.

Class Precision Recall f1 score
Benign 1 0.93 0.97
Malicious 0.87 1 0.93

583

0

Tr
ue

 la
be

l

Predicted label

0

0 1

1

7417

4000

7000

6000

5000

4000

3000

2000

1000

0

Figure 7: Performance analysis of LSTM.

Table 8: Per class metric values for LSTM.

Class Precision Recall f1 score
Benign 1 0.93 0.96
Malicious 0.87 1 0.93

Computational Intelligence and Neuroscience 11



incorrectly predicted 585 benign websites as malicious and
did not incorrectly predict any malicious URLs as benign as
shown in Figure 8. Table 9 gives the per class metrics for
CNN.

6. Conclusion and Future Work

With the growing number of web domains, there has been a
surge in the number of malicious URLs generally used by
cybercriminals to inject malicious code into victims’ devices,
thereby compromising the confidentiality, integrity, and
availability of systems. +erefore, there is an urgent need for
detection methods to evolve and recognize the ever more
sophisticated methods being used by attackers to target
victims. Identifying ways to use intelligent methods to tackle
this issue has become a significant research area. Many
researchers have focused on building classification models.
In this paper, we focused on features engineering and
building different models, namely, RF, NB, CNN, and LSTM
to analyze and compare to achieve a high level of classifi-
cation accuracy. We evaluated the models’ performance
using a number of matrices including accuracy, precision,
recall, and F-score. +e final features used in the dataset for
experimentation contained a mix of lexical, content-based,
and host-based features which were selected by performing
three features selection techniques, namely, ANOVA, chi-
square, and correlation. +e results of the experiments show
that NB obtained the highest accuracy of 96.01%, followed by
RF and LSTM with an accuracy of 95.1%. A plethora of
features were extracted, and different sets of experiments
were performed in this research. Future work can focus on
extracting one content-based feature that sometimes im-
proves accuracy: the top keywords feature of the website

content. Some researchers have used the term frequency-
inverse document frequency (TF-IDF) technique to extract
the keywords. However, in our research, this technique
produced numerous features, making it difficult to process
and apply them in intelligent models due to memory
constraints. Hence, in future work, we propose to extract the
keywords feature from the dataset used and apply it in
intelligent models to measure performance accuracy.
Moreover, we suggest building real-time models capable of
detecting new URLs and websites and classifying them in
real time in order to stop suspicious websites before they get
launched publicly [13, 36, 44].

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest to
report regarding the present study.

Authors’ Contributions

+e authors declare equal contributions. +e authors have
read and approved the final manuscript.

Acknowledgments

+e authors would like to thank SAUDI ARAMCO
Cybersecurity Chair at Imam Abdulrahman Bin Faisal
University for funding this project.

References

[1] H. Choi, B. Zhu, and H. Lee, “Detecting malicious web links
and identifying their attack types,” in Proceedings of the 2nd
USENIX Conference on Web Application Development,
pp. 125–136, USENIX Association, Oregon, OR, USA, June
2011.

[2] Z. Bazrafshan, H. Hashemi, S. Fard, and A. Hamzeh, “A
survey on heuristic malware detection techniques,” in Pro-
ceedings of the ;e 5th Conference on Information and
Knowledge Technology, Malware Detection Based on Signal
Processing Techniques, Shiraz, Iran, May 2013.

[3] M. Aljabri, S. S. Aljameel, R. M. A. Mohammad et al., “In-
telligent techniques for detecting network attacks: review and
research directions,” Sensors, vol. 21, pp. 7070–7143, 2021.

[4] F. Alkhudair, M. Alassaf, R. Khan, and S. Alfarraj, “Detecting
malicious URL,” in Proceedings of the 2020 International
Conference on Computing and Information Technology,
pp. 1–5, ICCIT, Tabuk, Saudi Arabia, December 2020.

[5] C. Urcuqui, J. Osorio, A. Navarro, and M. Garćıa, “Machine
learning classifiers to detect malicious websites,” in School on
Systems and Networkspp. 14–17, Pucon, Chile, 2017.

[6] A. Manjeri, R. Kaushik, M. Ajay, and N. Priyanka, “Amachine
learning approach for detecting malicious websites using URL
features,” in Proceedings of the 3rd International Conference
on Electronics, Communication and Aerospace Technology
(ICECA), pp. 555–561, IEEE, Coimbatore, India, June 2019.

585

0

Tr
ue

 la
be

l

Predicted label

0

0 1

1 4000

7000

6000

5000

4000

3000

2000

1000

0

7415

Figure 8: Performance analysis of CNN.

Table 9: Per class metric values for CNN.

Class Precision Recall f1 score
Benign 1 0.93 0.96
Malicious 0.87 1 0.93

12 Computational Intelligence and Neuroscience



[7] S. Kumi, C. Lim, and S. G. Lee, “Malicious URL detection
based on associative classification,” Entropy, vol. 23, no. 2,
pp. 182–212, 2021.

[8] J. McGahagan, D. Bhansali, C. Pinto-Coelho, and M. Cukier,
“Discovering features for detecting malicious websites: an
empirical study,” Computers & Security, vol. 109, Article ID
102374, 2021.

[9] P. Patgiri, H. Katari, R. Kumar, and D. Sharma, “Empirical
study onmalicious URL detection usingmachine learning,” in
Proceedings of the 15th International Conference, ICDCIT
2019, pp. 380–388, Bhubaneswar, India, January 2019.

[10] S. Kim, J. Kim, S. Nam, and D. Kim, “WebMon: ML- and
YARA-based malicious webpage detection,” Computer Net-
works, vol. 137, no. 1, pp. 119–131, 2018.

[11] H. Khan, Q. Niyaz, V. Devabhaktuni, S. Guo, and U. Shaikh,
“Identifying generic features for malicious URL detection
system,” in Proceedings of the IEEE Annual Ubiquitous
Computing, Electronics & Mobile Communication Conference
(UEMCON), pp. 347–352, IEEE, New York, NY, USA, Oc-
tober 2019.

[12] M. Atrees, A. Ahmad, and F. Alghanim, “Enhancing detection
of malicious URLs using boosting and lexical features,” In-
telligent Automation & Soft Computing, vol. 31, no. 3,
pp. 1405–1422, 2022.

[13] J. Ateeq and M. Moreb, “Detecting malicious URL using
neural network,” in Proceedings of the International Congress
of Advanced Technology and Engineering (ICOTEN), pp. 1–8,
IEEE, Taiz, Yemen, July 2021.

[14] A. Lashkari, A. Kadir, L. Taheri, and A. Ghorbani, “Toward
developing a systematic approach to generate benchmark
android malware datasets and classification,” in Proceedings of
the International Carnahan Conference on Security Technol-
ogy, pp. 1–7, IEEE, Montreal, QC, Canada, October 2018.

[15] W. Wei, Q. Ke, J. Nowak, M. Korytkowski, R. Scherer, and
M. Woźniak, “Accurate and fast URL phishing detector: a
convolutional neural network approach,” Computer Net-
works, vol. 178, Article ID 107275, 2020.

[16] C. Luo, S. Su, Y. Sun, Q. Tan, M. Han, and Z. Tian, “A
convolution-based system for malicious URLs detection,”
Computers, Materials & Continua, vol. 62, no. 1, pp. 399–411,
2020.

[17] A. Saleem Raja, R. Vinodini, and A. Kavitha, “Lexical features
based malicious URL detection using machine learning
techniques,” Materials Today Proceedings, vol. 47, no. 1,
pp. 163–166, 2021.

[18] Y. Chen, M. Yi-Wei, and J. Chen, “Intelligent malicious URL
detection with feature analysis,” in Proceedings of the IEEE
Symposium on Computers and Communications (ISCC),
pp. 1–5, IEEE, Rennes, France, July 2020.

[19] F. Nargesian, H. Samulowitz, U. Khurana, E. Khalil, and
D. Turaga, “Learning feature engineering for classification,” in
Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI-17), pp. 2529–2535, Mel-
bourne, Australia, August 2017.

[20] T. Li, G. Kou, and Y. Peng, “Improving malicious URLs
detection via feature engineering: linear and nonlinear space
transformation methods,” Information Systems, vol. 91, no. 1,
Article ID 101494, 2020.

[21] A. Singh and N. Goyal, “A comparison of machine learning
attributes for detecting malicious websites,” in Proceedings of
the 11th International Conference on Communication Systems
& Networks (COMSNETS), pp. 352–358, IEEE, Bengaluru,
India, January 2019.

[22] R. Mohammad, F. +abtah, and T. McCluskey, “An assess-
ment of features related to phishing websites using an au-
tomated technique,” in Proceedings of the 2012 International
Conference for Internet Technology and Secured Transactions,
pp. 492–497, IEEE, London, UK, December 2012.

[23] M. Alzaqebah, S. Jawarneh, R. Mohammad, M. Alsmadi, and
I. Almarashdeh, “Improved multi-verse optimizer feature
selection technique with application to phishing, spam, and
denial of service attacks,” International Journal of Commu-
nication Networks and Information Security, vol. 13, no. 1,
pp. 76–81, 2021.

[24] R. M. Mohammad, F.+abtah, and L. McCluskey, “Predicting
phishing websites based on self-structuring neural network,”
Neural Computing & Applications, vol. 25, no. 2, pp. 443–458,
2014.

[25] R. M. Mohammad, F.+abtah, and L. McCluskey, “Intelligent
rule-based phishing websites classification,” IET Information
Security, vol. 8, no. 3, pp. 153–160, 2014.

[26] M. Aljabri and S. Mirza, “Phishing attacks detection using
machine learning and deep learning models,” in Proceedings
of the 2022 7th International Conference on Data Science and
Machine Learning Applications (CDMA), pp. 175–180, IEEE,
Riyadh, Saudi Arabia, March 2022.

[27] A. Singh, “Malicious and benign webpages dataset,” Data in
Brief, vol. 32, no. 1, pp. 106304–106311, 2020.

[28] D. Wang, S. B. Navathe, L. Liu, D. Irani, A. Tamersoy, and
C. Pu, “Click traffic analysis of short URL spam on Twitter,” in
Proceedings of the 9th IEEE International Conference on
Collaborative Computing: Networking, Applications and
Worksharing, pp. 250–259, IEEE, Austin, TX, USA, October
2013.

[29] J. Cao, Q. Li, Y. Ji, Y. He, and D. Guo, “Detection of for-
warding-based malicious URLs in online social networks,”
International Journal of Parallel Programming, vol. 44, no. 1,
pp. 163–180, 2016.

[30] C. Cao and J. Caverlee, “Detecting spam urls in social media
via behavioral analysis,” in Proceedings of the European
Conference on Information Retrieval, pp. 703–714, Springer,
Cham, New York, NY, USA, March, 2015.

[31] A. Singh and N. Goyal, “MalCrawler: {A} crawler for seeking
and crawling malicious websites,” in Proceedings of the In-
ternational Conference on Distributed Computing and Internet
Technology, pp. 210–223, Springer, Cham, Bhubaneswar,
India, November 2017.

[32] N. Provos, P. Mavrommatis, M. Abu Rajab, and F. Monrose,
“All your iframes point to us,” in Proceedings of the ;e 17th
Conference on Security Symposium, pp. 1–15, USENIX As-
sociation, Berkeley, CA, USA, July 2008.

[33] A. Gorji and M. Abadi, “Detecting obfuscated JavaScript
malware using sequences of internal function calls,” ;e 2014
ACM Southeast Regional Conference, Association for Com-
puting Machinery, pp. 1–6, March 2014.

[34] S. Morishige, S. Haruta, H. Asahina, and I. Sasase, “Obfus-
cated malicious javascript detection scheme using the feature
based on divided URL,” in Proceedings of the 23rd Asia-Pacific
Conference on Communications (APCC), pp. 1–6, IEEE, Perth,
Australia, December 2017.

[35] M. Sheikhan, M. Bejani, and D. Gharavian, “Modular neural-
SVM scheme for speech emotion recognition using ANOVA
feature selection method,” Neural Computing & Applications,
vol. 23, no. 1, pp. 215–227, 2013.

[36] T. M. Franke, T. Ho, and C. A. Christie, “+e chi-square test:
often used and more often misinterpreted,” American Journal
of Evaluation, vol. 33, no. 3, pp. 448–458, 2012.

Computational Intelligence and Neuroscience 13



[37] E. C. Blessie and E. Karthikeyan, “Sigmis: a feature selection
algorithm using correlation based method,” Journal of Al-
gorithms & Computational Technology, vol. 6, no. 3,
pp. 385–394, 2012.

[38] I.Witten, E. Frank, M. Hall, and C. Pal,DataMining: Practical
Machine Learning Tools and Techniques, vol. 1, pp. 1–621,
Morgan Kaufmann, Burlington, Massachusetts, USA, 2017.

[39] K. Lemons, “A comparison between Näıve bayes and random
forest to predict breast cancer,” International Journal of
Undergraduate Research and Creative Activities, vol. 12, no. 1,
1, Oct. 2020.

[40] F. Khan, J. Ahamed, S. Kadry, and L. K. Ramasamy,
“Detecting malicious URLs using binary classification
through ada boost algorithm,” International Journal of
Electrical and Computer Engineering, vol. 10, no. 1, pp. 997–
1005, 2020.

[41] S. Sahu, R. Kumar, M. S. Pathan, J. Shafi, Y. Kumar, and
M. F. Ijaz, “Movie popularity and target audience prediction
using the content-based recommender system,” IEEE Access,
vol. 10, Article ID 42060, 2022.

[42] P. Kaur and K. Kumar, “Automatic license plate recognition
system for vehicles using a cnn,” Computers, Materials &
Continua, vol. 71, no. 1, pp. 35–50, 2022.

[43] F. Gers, “Long Short-Term Memory in Recurrent Neural
Networks,” 2001, https://www.researchgate.net/publication/
2562741_Long_Short-Term_Memory_in_Recurrent_Neural_
Networks.

[44] C. Olah, “Understanding LSTM Networks,” 2015, http://
colah.github.io/posts/2015-08-Understanding-LSTMs/.

[45] A. Vulli, P. N. Srinivasu, M. S. K. Sashank, J. Shafi, J. Choi, and
M. F. Ijaz, “Fine-tuned DenseNet-169 for breast cancer
metastasis prediction using FastAI and 1-cycle policy,” Sen-
sors, vol. 22, no. 8, p. 2988, 2022.

[46] M. Mamun, M. Rathore, A. Lashkari, N. Stakhanova, and
A. Ghorbani, “Detecting malicious URLs using lexical anal-
ysis,” in Proceedings of the International Conference on Net-
work and System Security, pp. 467–482, Springer, Cham,
Taipei, Taiwan, September 2016.

[47] K. Al-Aidaroos, A. Bakar, and Z. Othman, “Näıve bayes
variants in classification learning,” in Proceedings of the 2010
International Conference on Information Retrieval &
Knowledge Management (CAMP), pp. 276–281, IEEE, Shah
Alam, Malaysia, March 2010.

[48] V. Dogra, S. Verma, Kavita et al., “A complete process of text
classification system using state-of-the-art NLP models,”
Computational Intelligence and Neuroscience, vol. 2022, Ar-
ticle ID 1883698, 26 pages, 2022.

14 Computational Intelligence and Neuroscience

https://www.researchgate.net/publication/2562741_Long_Short-Term_Memory_in_Recurrent_Neural_Networks
https://www.researchgate.net/publication/2562741_Long_Short-Term_Memory_in_Recurrent_Neural_Networks
https://www.researchgate.net/publication/2562741_Long_Short-Term_Memory_in_Recurrent_Neural_Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

